Stability behaviour of nonconventional cold-formed steel structures

László Dunai

Professor

Gábor Jakab

Asst.

Professor

Budapest University of Technology and Economics

Department of Structural Engineering

"Non-conventional"

ESMC 2009

Non-conventional arrangements

Section types combined sections

Eccentricities eccentric section arrangements in joints eccentric load introduction on section elements

Connections connectors, contacts

Lateral supports discrete position; partial rigidity

Stability behaviour ?

Frame

September 7-11, 2009, Lis

Frame – application

ESMC 2009

Truss

Truss – application

Research methodology

ESMC 2009

Research strategy

Structural element and connection

C-section structural elements

Fundamental research on element behaviour

Subject of the research

- centric/eccentric compression
- combined built-up sections
- load introduction
- lateral restraints

Aims

- stability behaviour
- failure mode identification
- FE model development, verification, application
- design method development, validation

Experimental program

- 10 different section and end connection arrangements
- 98 tests
- C150/1.0 C200/2.5
 - web b/t: 80-200
- Specimen lengths
 - 800, 1500, 2000, 2500, 3600 mm

Test preliminary design

Single C-section elements

ESMC 2009

Element end failure

Short screw layout on web

Stub column – web connection

Load introduction at the whole section end

Screw arrangement – web/flange

Screw arrangement – web

ESMC 2009

"I-section" elements

Single ↔ double section

"Hollow" section elements

Tension and compression side

September 7-11, 2009, Lis

ESMC 2009

Behaviour modes

Laterally supported elements

September 7-11, 2009, Lis

ESMC 2009

Single C-section element FE model

Software: ANSYS Element: SHELL181 (4-node, 24 DOF's) Material model: linear elastic – hardening plastic Contact surfaces: CONTA173/TARGE170

Self-drilling screw model:

- "beamstar"; BEAM4
- calibrated stiffness parameters

Model size: ~ 100000 DOF's (L=2500 mm)

FE

Geometrical imperfections

cFSM analysis→ pure modes model 3.5 qlobal distortional 3 local 2.5 2 gactor 1.5 other 1 0.5 0 10¹ 10² 10^{3} 10⁴ half-wavelength 100 r global — — — distortional 80 - · - · · · local modal participation ····· other 60 4N 20 10² 10^{3} 104 half-wavelength

FE analysis

C40, C200/1.5, L=2500, 9 screws

C66, C200/2, L=1500, 16 screws

September 7-11, 2009, Lis

ESMC 2009

Single section element resistances

September 7-11, 2009, Lis

Buckling – bending design resistance

ESMC 2009

Double section design resistance

$$\frac{N_{Ed}}{\chi_{\min} \cdot f_{yb} \cdot A_{eff} / \gamma_{M1}} + \frac{\kappa_z \cdot (M_{z,Ed} + \Delta M_{z,Ed})}{f_{yb} \cdot W_{eff,z,com} / \gamma_{M1}} \leq \alpha$$

Section type	lpha
l column	0.8·L+1.0, L – element length [m]
CC	1.8
CU	1.3 – C-section loaded 1.8 – U-section loaded
I brace	2.5

C-section truss

Subject of the research

- full-scale truss experimental study
- different structural elements
- different joints

Aims

- interacting stability behaviour
- failure mode identification
- FE model development, verification
- design method validation

Test #1

failure in the upper chord, interaction bending and

ESMC 2009

Test #5/1

failure in the lower chord

joint nearest to the support interaction of shear and

ESMC 2009

Test #5/2

failure of the upper chord; interaction of bending and flexural buckling

Load-deflection relationship

Truss FE model

Software ANSYS **Element**: SHELL181 (4-node, 24 DOF's) Material model: linear elastic – hardening plastic Contact surfaces: CONTA173/TARGE170 **Bolt model**: modified "beamstar"; BEAM4 calibrated stiffness parameter

Imperfections: selected eigenmodes **Model size**: ~ 1.400.000 DOF's

Eigenmodes – imperfections

FE analysis – joint failure

ESMC 2009

FE analysis – chord buckling

ESMC 2009

Design method

 $\frac{\text{Compression chord: single section resistance --- reduced out-of-}}{\sum_{k=d}^{N_{Ed}} \sum_{k=1}^{N_{Ed}} \sum$

Brace: single and I-section resistance

N-joint: shear resistance and interaction of joint and chord member

$$V_{b,Rd} = \frac{\chi_w \cdot f_y \cdot A_{v,eff}}{\sqrt{3} \cdot \gamma_{M5}}$$
$$N_{0,Rd} = \left[\left(A_{0,eff} - A_{v,eff} \right) \cdot f_y + A_{v,eff} \cdot f_y \cdot \sqrt{1 - \left(V_{Ed} / V_{b,Rd} \right)^2} \right] / \gamma_{M5}$$

Concluding remarks

- **Research methodology:** from experiments to design of nonconventional cold-formed steel structures.
- Experiments on C-section elements: test results for a wide range of arrangement (section, load introduction); modified stability behaviour modes.
- **FE model for screwed members:** screw model, cFSM pure mode imperfections, calibration, test domain extension.
- **Development of cold-formed structures:** truss, frame, purlin, composite floor beam; experimental and numerical research.
- Global advanced FE model: development, verification, applicability.
- Design methods: experimental and numerical validation of modified
- and/or new application rules for the structural elements, joints and ESMC 2009

Budapest University of Technology and Economics

Thank you for your attention!

ESMC 2009