

Advanced stability analysis and design of a new Danube archbridge

DUNAI, László JOÓ, Attila László VIGH, László Gergely

6th European Solid Mechanics Conference

Subject of the lecture

Buckling of steel tied arch Buckling of orthotropic steel plates

ANALYSIS – DESIGN METHODS – APPLICATION

6th European Solid Mechanics Conference

Contents

- About the bridge
- Global buckling of tied arch
 - Experimental buckling analysis
 - Evaluation of classical and advanced design methods
 - Application

Orthotropic plate buckling

- Overview of design methods
- FE simulation based stability analysis and design
- Application

Concluding remarks

Dunaújváros Danube bridge

6th European Solid Mechanics Conference

Location

6th European Solid Mechanics Conference

Geometry

- Total length of the bridge: 1780 m
- Main span; tied arch bridge: 307.8 m
 - arch height: 48 m steel box: 2 x 3.8 m

Current stage

Webcam:

http://www.dunaujhid.hu/webcam.html

6th European Solid Mechanics Conference

Tasks of the Department

Preliminary phase: advisor for designer Design phase: research on design methods model test – arch stability wind tunel test on section model analysis and design stability, fatigue, earthquake, aerodynamic

Construction phase: erection method structural design for erection

Model test on arch stability

6th European Solid Mechanics Conference

Purpose

6th European Solid Mechanics Conference

Bridge model M=1:34

Loading system

6th European Solid Mechanics Conference

Budapest University of Technology and Economics

DEPARTMENT OF STRUCTURAL ENGINEERING

Total loading: $\Sigma q=220 \text{ kN}$ Self-weight + 75 x 40 t trucks

6th European Solid Mechanics Conference

Budapest University of Technology and Economics.

DEPARTMENT OF STRUCTURAL ENGINEERING

partial half-sided loading: Σq =50 kN

Failure test - 1

out-of-plane buckling of the arch

local plate buckling

6th European Solid Mechanics Conference

Failure test - 2

half-sided loading: 110 kN

in-plane buckling of the arch

6th European Solid Mechanics Conference

Numerical model

Model data	Ansys	Ansys
	beam model	shell model
Element type	BEAM44	SHELL181
	LINK10	LINK10
number of elements	~6 000	~17 000
number of nodes	~12 000	~17 000

Analysis				
Linear	material and geometrical linearity			
Instability	Block Lanczos buckling analysis			
Geometrically nonlinear	geometrical nonlinearity, imperfect model			
Virtual experiment	material and geometrical nonlinearity, imperfect model			

Budapest University of Technology and Economics

DEPARTMENT OF STRUCTURAL ENGINEERING

Verification

6th European Solid Mechanics Conference

Internal forces: N, M_y, M_z from analyses:

- 1. linear + second order modification factor
- 2. geometrically nonlinear equivalent imperfection 1
- 3. geometrically nonlinear equivalent imperfection 2

Equivalent imperfection size 1

DEPARTMENT OF STRUCTURAL ENGINEERING

<u>Eurocode 3 – Part 1.1:</u> shape of the elastic critical buckling mode: η_{cr}

Equivalent imperfection size 2

Eurocode 3 - Part 2: $\eta_{0,y} = \frac{l}{250}$ $\eta_{0,z} = \frac{l}{500}$ (Design of bridges) in-plane out-of-plane out-of-plane in-plane buckling mode: buckling mode: In-plane Out-of-plane 17.98 mm 35.96 mm

6th European Solid Mechanics Conference

Comparison of classical design methods

	total load	half-sided load
HS	2.25	3.06
JSHB	3.07	3.28
EC3	2.20	1.87

experimental ultimate load / standard ultimate load

6th European Solid Mechanics Conference

Comparison of Eurocode approaches

	total load	half-sided load
EC3 – linear	2.20	1.87
EC3 – eqv. geom. imp. 1	1.45	1.84
EC3 – eqv. geom. imp. 2	2.29	2.15

experimental ultimate load / standard ultimate load

Arch bridge erection

Finite element model

6th European Solid Mechanics Conference

Erection phases

- 1. Bridge is on the riverbank on a rack system
- 2. The cables are stressed to the self weight
- 3. Additional bars are built in the bridge

DEPARTMENT OF STRUCTURAL ENGINEERING

4. The bridge is palced on barges

Stress analysis

6th European Solid Mechanics Conference

Budapest University of Technology and Economics

DEPARTMENT OF STRUCTURAL ENGINEERING

Instability analysis

Out-of-plane buckling

Stiffening bar buckling

NODAL SOLUTION STEP-1 SUB -1 SUB -1

 $\alpha_{cr} = 3.97$

MOAL SOLUTION PTERF1 SUB =9 PR674.008 UNX RX =.007694 BXX =.007694 0 .00171 .00265 .00141 .00244 .005112 .005112 .00512 .00512 .00512 .00512 .00512 .00569

In-plane buckling

 $\alpha_{\rm cr} = 14.088$

 $\alpha_{cr} = 28.488$

6th European Solid Mechanics Conference

Orthotropic plate buckling

Orthotropic plates

6th European Solid Mechanics Conference

Design methods - Hungarian Standard

allowable stress design

$$f_y = 460 MPa \longrightarrow \sigma_e = 300 MPa$$

factor ~1.47

- · dominantly compressed stiffened plates or plate parts
 → (1) buckling of fictive column stub
- stiffened plate subject to complex stress field \rightarrow (2) orthotropic plate check
- irregular configuration and stress field ??? no rule given
 → (3) generalized plate check

Budapest University of Technology and Economics

DEPARTMENT OF STRUCTURAL ENGINEERING

(1) Buckling of fictive column stub

- fictive column = stiffener + adjacent plating
- column slenderness (λ) and reduction factor (ϕ)

6th European Solid Mechanics Conference

Actual calculations on the Danube bridge

Case	t_p	b	a	stiffener
Nr.	[mm]	[m]	[m]	
1	40	2	4.56	2 x 280-22
2	30	3.8	4.56	5 x 280-22
3	50	2	2.125	2 x T270-150-22
4	20	3.8	3.9	5 x 280-22
5	16	3.8	3.86	5 x 280-22
6	20	2	3.86	2 x 280-22

 t_p – plate thickness; b – plate width; a – plate length between transverse stiffeners or diaphragms

Budapest University of Technology and Economics.

DEPARTMENT OF STRUCTURAL ENGINEERING

(2) Orthotropic plate subject to complex stress field

- plate-type behaviour
- plate slenderness (λ_o) and reduction factor (ϕ_b)

$$\lambda_0 = \frac{3.3}{\sqrt{k_{red}}} \frac{b}{t} \qquad k_{red}: \text{ buckling coefficient, e.g. Klöppel-Scheer-Möller (overall plate buckling of horizontally and longitudinally stiffened plates)}$$

 ϕ_b reduction factor for plates

• check:
$$\sigma_{red} = \sqrt{\sigma^2 + 3\tau^2} \le \phi_b \cdot \sigma_e$$

6th European Solid Mechanics Conference

Budapest University of Technology and Economics.

DEPARTMENT OF STRUCTURAL ENGINEERING

(3) Irregular configuration and stress field - ??? no rule given

- · assume plate-type behaviour \rightarrow generalized
- plate slenderness (λ_o) and reduction factor (ϕ_b)

6th European Solid Mechanics Conference

Actual calculations on the Danube bridge

Design methods - Eurocode 3 Part 1-5

- (1) basic procedure for stiffened plates in complex stress fields (no use of numerical models)
- (2) partial use of FEM: plate slenderness from bifurcation analysis
- (3) reduced stress method
- (4) finite element analysis based design (full numerical simulation)

Budapest University of Technology and Economics

DEPARTMENT OF STRUCTURAL ENGINEERING

(1) Basic procedure (no use of numerical models)

consideration of both plate-type and column-like buckling

6th European Solid Mechanics Conference

Budapest University of Technology and Economics.

DEPARTMENT OF STRUCTURAL ENGINEERING

(1) Basic procedure (no use of numerical models)

consideration of both plate-type and column-like buckling

6th European Solid Mechanics Conference

(4) Finite element analysis based design

- geometrical and material non-linearity
- equivalent geometric imperfections
- non-linear simulation

28 August – 1 September, Budapest, Hungary, 2006

equivalent geometric imperfections

a) global imperfection of stiffener

b) imperfection of subpanel

c) local imperfection of stiffener

alternatively, relevant buckling shapes, i.e.
 a) overall buckling,
 b) local buckling of subpanels,
 c) torsion mode of the stiffener

6th European Solid Mechanics Conference

overall/local plate buckling usually accompanied by the torsion of stiffener

the requirements for the imperfection amplitudes are difficult to satisfy

6th European Solid Mechanics Conference

Comparison

Concluding remarks

- Tied arch bridge project
- Studies on global stability of tied arch
 - Model test
 - Evaluation of classical and advanced design methods in comparison to the test ultimate loads.
- Studies on the buckling of orthotropic plates
 - Design methods classical and advanced
 - Comparison of different design methods to FE simulation based results.
 - Application

Thank you for your attention!

6th European Solid Mechanics Conference