Determination of the patch loading resistance of girders with corrugated webs using nonlinear finite element analysis

László Dunai Professor BME Dept.of Structural Engineering Balázs Kövesdi PhD Student BME Dept. of Structural Engineering

CC09-S09

September 1-4, 2009, Madeira

Contents

- Experimental investigations
 - Patch loading experiments on girders with corrugated webs
- Numerical investigations
 - FEM model development
 - Comparison of numerical simulations and test results
- FEM based desing method
 - Investigations for the equivalent geometric imperfections
 - Imperfection shapes
 - Imperfection scaling factor
- Conclusions

Patch loading tests

Experimental program 12 test specimens

- Aims of the tests 1. Determination of the patch loading resistance for different geometrical arrangement.
 - 2. Verification of the developed design method.
 - 3. Development of FEM based design method.

September 1-4, 2009, Madeira

Test arrangement

September 1-4, 2009, Madeira

Patch loading tests

Failure modes- loading length

- loaded fold

loaded fold: parallel fold loading length: 90mm loaded fold: parallel fold loading length: 200mm

FEM based design method

Research strategy

- 1. FE model development for all test specimens
- 2. Experimental patch loading resistance \longleftrightarrow numerical resistance
- 3. Experimental failure mode ← numerical failure mode
 4. Experimental load-displacement diagram ← numerical analysis
- 5. Verification of the numerical model
 - 6. Recommendations for equivalent geometric imperfection

Aim: determination of the design value of the patch loading resistance by numerical simulation

Problem to be solved: *—* imperfection shape

imperfection scaling factor

Numerical model development

Finite element model

Experimental and numerical resistances

	R _{exp} [kN]	R _{num} [kN]	difference [%]
1. specimen	754,20	771,08	2,2
2. specimen	956,48	1044,18	9,2
3. specimen	764,75	769	0,6
4. specimen	949,02	969,054	2,1
5. specimen	1192,01	1201,24	0,8
6. specimen	1119,33	1155,901	3,3
7. specimen	1077,72	1093,58	1,5
8. specimen	1263,94	1285,4	1,7
9. specimen	1220,48	1250,34	2,4
10. specimen	1090,00	1120,4	2,8
11. specimen	1280,99	1314,078	2,6
12. specimen	772,39	781,05	1,1

Numerical model verification

experimental failure mode

numerical simulation

CC09-S09

September 1-4, 2009, Madeira

Numerical model verification

Observations in the experiments: different post-ultimate behaviours

Experimental load-displacement curves Numerical load-displacement curves

imperfections

September 1-4, 2009, Madeira

Numerical model verification

September 1-4, 2009, Madeira

FEM based design method

No recommendations for imperfection of corrugated webs in EC3-1-5

Possible standardised imperfection types

Aims

Based on executed experiments the development of recommendations for equivalent geometric imperfections.

Figure C.1: Modelling of equivalent geometric imperfections

September 1-4, 2009, Madeira

Equivalent geometric imperfection shape

1. buckling mode

2. ultimate shape

3. Sinus function based on EC3 subpanel

September 1-4, 2009, Madeira

Equivalent geometric imperfection shape

4. numerical approach of the buckling mode:

k: distance between null points

m: falloff rate

Equivalent geometric imperfection shape

Scaling factor determination for:

1. first buckling mode

- 2. ultimate shape
- 3. sin(x) wave shape

Experimental background:

Imperfection sensitivity for all three imperfection shapes.

Imperfection scaling factor recommendations:

sin(x) shape imperfection: $a_i/200$ local buckling mode imperfection: $a_i/200$

contradictions

Evaluation of ultimate shape imperfection

Unexpected cases: ultimate shape imperfection gives the largest resistance

First buckling mode

Ultimate shape

Evaluation of ultimate shape imperfection

Ultimate shape in different load steps:

Shape by point (1):

Shape by point (2):

Conclusions

Thank you for your attention!

September 1-4, 2009, Madeira