Imperfections for use with corrugated webs

Balázs Kövesdi PhD Student Supervisors:

Prof. Dr.-Ing. László Dunai Prof. Dr.-Ing. Ulrike Kuhlmann

Intoduction

- Previous research activity
 - Modified design method for patch loading resistance
 - Fatigue experiments on girders with corrugated webs
- Experimental investigations
 - Patch loading experiments on girders with corrugated webs
- Numerical investigations
 - FEM model development
 - Comparison of numerical simulations and tests
- FEM based desing method
 - Investigations for the equivalent geometric imperfections
 - Recommendation for possible imperfection shapes
 - Recommendation for imperfection scaling factor
- Summary

Previous research activity 1.

Patch loding resistance of girders with corrugated webs

Based on previous investigations from literature

 Image: Numerical model development

 Numerical parametric study

 (parameters having influence on the patch loading resistance)

Modified analitical design method

$$R = R_{w} + R_{f} =$$

$$\rho \cdot ss \cdot t_{w} \cdot f_{yw} \cdot k_{\alpha} + 2 \cdot \sqrt{4 \cdot M_{plf} \cdot \delta \cdot t_{w} \cdot f_{yw}}$$

Previous research activity 2.

Fatigue tests on girders with corrugated webs

Experimental program:


```
6 large scale specimens
    (L=6750m; h<sub>w</sub>=500mm; t<sub>w</sub>=6mm; b<sub>f</sub>=225mm;
     t<sub>f</sub>=20-30mm)
    Test arrangement: (3 and 4 point bending)
    Fatigue class determination of the structural
    detail
                Δσ [MPa]
                              Trapézlemez gerincű tartók fáradási kísérleti élettartama
                                      és fáradási osztályba sorolása
                                                             at al. 2006 [4]
                  10^{2}
```

 10^{6}

 2×10^6

5x10

10

 10^8 N [db]

8th Official Meeting of ECCS-TWG 8.3, 24th April, 2009, Stuttgart, Germany

105

Experimental program: 12 test specimens

Aim of the tests: 1. Fatigue test girders could be used.

- 2. Determination of the patch loading resistance for different geometrical arrangement.
- 3. Verification of the previously developed modified design method.

Test arrangement

Test specimens

 $h_w = 500mm$ $t_w = 6mm$ $b_f = 225mm$ $t_f = 20mm; 30mm$ $alpha = 39^{\circ}$ $a_1 = 210mm$ $a_2 = 212mm$

Analysed parameters

- 1. loaded fold (parallel, inclined, corner area)
- 2. loading length (90mm, 200mm, 380 mm)
- 3. span (1140mm, 1500mm, 1875 mm)
- 4. flange thickness (20mm, 30 mm)
- 5. loading eccentricity

Failure modes:

loading lengthloaded fold

loaded fold: parallel fold loading length: 90mm loaded fold: parallel fold loading length: 200mm

loaded fold: inclined fold loading length: 90mm loaded fold: inclined fold loading length: 200mm

8th Official Meeting of ECCS-TWG 8.3, 24th April, 2009, Stuttgart, Germany

Comparison of test results and design methodDeveloped design method: $R = R_w + R_f =$ \uparrow $\rho \cdot ss \cdot t_w \cdot f_{yw} \cdot k_{\alpha} + 2 \cdot \sqrt{4 \cdot M_{plf} \cdot \delta \cdot t_w \cdot f_{yw}}$

Test results

Research strategy:

- 1. FE model development for all test specimens
- 2. Experimental patch loading resistance $\leftarrow \rightarrow$ numerical calculations
- $\begin{cases} 3. Experimental failure mode \longleftarrow numerical failure mode \\ 4. Experimental load-displacement diagram \longleftarrow numerical analysis \end{cases}$
- 5. Verification of the numerical model
 - 6. Recommendations for equivalent geometric imperfection

Aim: Determination of the design value of the patch loading resistance by numerical simulation

Problem by FE calculations : --- imperfection form

→ imperfection scaling factor

Recommendations developed

1. Numerical model

2. Comparison of test results and numerical calculations

	R _{exp} [kN]	R _{num} [kN]	difference [%]
1. specimen	754,20	771,08	2,2
2. specimen	956,48	1044,18	9,2
3. specimen	764,75	769	0,6
4. specimen	949,02	969,054	2,1
5. specimen	1192,01	1201,24	0,8
6. specimen	1119,33	1155,901	3,3
7. specimen	1077,72	1093,58	1,5
8. specimen	1263,94	1285,4	1,7
9. specimen	1220,48	1250,34	2,4
10. specimen	1090,00	1120,4	2,8
11. specimen	1280,99	1314,078	2,6
12. specimen	772,39	781,05	1,1

3. Experimental failure mode

3. Experimental failure mode

Observations in the experiments: Different post-ultimate behaviours

Experimental load-displacement curves

Numerical load-displacement curves

Reason: Imperfections

- (1) a, First yielding in the flange (if imperfection size = 0mm)b, Simultaneous yielding in the flange and web (if imperfection size = 2,65mm)
- (2) First yielding in the web (if imperfection size = 0mm)
- (3) (4) 2 plastic hinges in the flange
- (5) (6) 4 plastic hinges in the flange

No recommendations for imperfection of corrugated webs in EC3-1-5.

Possible standardised ______

Aim of the research:

Based on executed experiments the development of recommendations for equivalent geometric imperfections.

Figure C.1: Modelling of equivalent geometric imperfections

Possible shapes

1. buckling mode

2. ultimate shape

4. numerical approach of the buckling mode: $f(x) = e^{-\frac{1}{L}m} \cdot \sin(\frac{1}{L} \cdot k \cdot \pi \cdot x)$

8th Official Meeting of ECCS-TWG 8.3, 24th April, 2009, Stuttgart, Germany

 $ss < a_1$

 $\sim a$

>a

Wavelength:

4. imperfection shape:

$$f(x) = e^{-\frac{1}{L \cdot m} \cdot x} \cdot \sin(\frac{1}{L} \cdot k \cdot \pi \cdot x)$$

Compared to all tests results — Necessary imperfection scaling factor

Imperfection scaling factor recommendations:sin(x) shape imperfection: $a_i/200$ buckling mode imperfection: $a_i/200$

Imperfection scaling factor recommendations:sin(x) shape imperfection: $a_i/200$ buckling mode imperfection: $a_i/200$

Evaluation of ultimate shape imperfection

Unexpected cases: Ultimate shape imperfection gives the largest resistance.

Evaluation of ultimate shape imperfection

Ultimate shape in different load steps:

Shape by point (1):

Shape by point (2):

Evaluation of ultimate shape imperfection

scaling factors are not always comparable

Summary

- 1. Patch loading tests (12 tested specimens)
- 2. Numerical model development for all test speciments
- 3. Model verification (comparison of numerical model ↔ test results)
- 4. Development of imperfections for patch loading of corrugated webs
 - 4.1. 3 imperfections shape analysis
 - 4.2. Imperfection sensitivity for different shapes

Imperfection shape and scaling factor determination

Proposal for FEM based design method

Thank you for your attention!