- Single-layer steel grid shells -Behaviour study and grid pattern optimization

KITTI GIDÓFALVY, DR. LEVENTE KATULA LÍVIA MÉSZÁROS

Budapest University of Technology and Economics

July 23rd 2012

Karlsruhe, 9th fib International PhD Symposium in Civil Engineering

Free-form structures

Roof structures, triangular network

Shell+beam-like behaviour Shell buckling, snap-through

Can we improve the structural behaviour by changing the geometry?

Geometry: beam length, angles, mesh density, topology

Improvement in structural behaviour: maximizing load-bearing capacity

Mesh, grid: network of beam centrelines

Load bearing capacity: Nonlinear, numerical analysis

Moving the nodes along a predefined surface:

- Fix surface, topology, boundary nodes
- Variables inner nodes

Can we improve the structural behaviour by changing the geometry?

Geometry: beam length, angles, mesh density, topology

Improvement in structural behaviour: maximizing load-bearing capacity

Mesh, grid: network of beam centrelines

Load bearing capacity: Nonlinear, numerical analysis

Moving the nodes along a predefined surface:

Fix - surface, topology, boundary nodes Variables - inner nodes

[Kaveh, 2011]

Topology and size optimization in literature: simple mesh types, simple surfaces

Mesh generating algorithm

Method

Process and steps of grid pattern optimization

Method

Process and steps of grid pattern optimization Contents of presentation:

- Analysis Structural model
- Analysis Solver
- q_{cr} : load bearing capacity
- Load, fitness function
- Automated grid generation process
- Results domes, free-form surfaces

Analysis – Model

Finitel element model

Beam finite elements

Ridig nodes, fixed supports

Perfectly elasto-plastic material model

Vertical nodal loads

Section: pipe: CHS 146*5 (r=73mm, t=5mm)

Steel grade: S235

Plasticity is not a typical failure mode Beam length, λ_{rel} = 1÷1,8

Analysis – Solver

Arc-length method

Geometrically nonlinear analysis, no imperfections

Instable behaviour

Load displacement curves $\longrightarrow q_{cr}$

ANSYS

Radius of arc-length:

- exact maximal load

- post-critical behaviour

Analysis – Load

Vertical nodal loads

Uniform nodal loads

Uniform distributed load – transferred to nodes based on triangular areas

Fitness function:

 $F_{cr} [kN] \qquad q_{cr} [kN/m^2] \qquad q_{cr} *A_{inner} /A [kN/m^2]$

Automated mesh generation

Goal

- mesh beam centrelines
- applicable for free form surfaces (NURBS)
- equidistant supports

Automated mesh generation

Goal

- mesh beam centrelines
- applicable for free form surfaces (NURBS)
- equidistant supports

Method: slicing the surface with 2 sets of bent planes

Automated mesh generation

Goal

- mesh beam centrelines
- applicable for free form surfaces (NURBS)
- equidistant supports

Method: slicing the surface with 2 sets of bent planes

Relaxation: refining the initial grid

n = 3	n = 4	n = 5	n = 7	n = 8	n = 9

Free-form:

n = 5

n = 7

n = 10

9th *fib* Int. PhD Symposium, Karlsruhe

Results – Coarse mesh – Dome 10

Coarse mesh

Generated mesh – relaxed mesh

No difference in qcr

Double symmetric layout – nodes are constrained

Results – Coarse mesh – Dome, n= 10

Coarse mesh

Improvement: 18 %

Initial mesh Optimal mesh

9th fib Int. PhD Symposium, Karlsruhe

Results – Coarse mesh – Dome, n=10

Coarse mesh

Different failure modes

Initial

Optimal

Results – Coarse mesh – Free-form #1, n=7

Coarse mesh

Results – Coarse mesh – Free-form #1, n=7

Coarse mesh

Initial mesh Optimal mesh

28 %

Results – Coarse mesh – Free-form #1, n=7

Coarse mesh

Initial mesh Optimal mesh

35 %

Different failure modes

Initial mesh – element buckling

Results – Dome, n=42

Failure mode: plasticity

4 %

Relaxed = Optimal - $8,21 \text{ kN/m}^2$

Results – Free-form #1, n=14

Initial (generated) 2,06 kN/m²

Relaxed 2,14 kN/m²

Modified 3,20 kN/m²

Optimal 4,11 kN/m²

100 %

Failure mode: Shell buckling (many nodes involved) due to very shallow surface Nodes can not move away from here

Different initial surface suggested

Results – Free-form #2

Modifying the surface NURBS control points

Results – Free-form #2, n=24

Plastic failure

Relaxed mesh - 7,06 kN/m² Optimal mesh - 7,16 kN/m²

31 %

Conclusions

Developed a method for grid pattern optimization

The significant effect of member grid pattern on load bearing capacity of single-layer steel grid shells has been demonstrated

Conclusions

Surface	Number of inner nodes	Load bearing capacity [kN/m ²]			
		Initial	Relaxed	Optimal	Improvement [%]
Dome, H/L=0,2	10	1,99	2,08	2,37	14
	10 sym.	1,99	2,08	2,35	14
	42	7,96	8,21	8,25	4
Free-form #1, L=25m	7	1,92	1,88	2,46	28
	14	2,06	2,14	4,11	100
	29	3,56	-	4,23	19
Free-form #2, L=26m	24	5,45	7,06	7,16	31

Domes + freeform surfaces; coarse + dense meshes; various beam lengths Beam length and failure modes are different!

Conclusions

Surface	Number of inner nodes	Load bearing capacity [kN/m ²]			
		Initial	Relaxed	Optimal	Improvement [%]
Dome, H/L=0,2	10	1,99	2,08	2,37	14
	10 sym.	1,99	2,08	2,35	14
	42	7,96	8,21	8,25	4
Free-form #1, L=25m	7	1,92	1,88	2,46	28
	14	2,06	2,14	4,11	100
	29	3,56	-	4,23	19
Free-form #2, L=26m	24	5,45	7,06	7,16	31

- 1. Improvement achieved by optimization is highly dependant on failure modes,
- 3. More efficient for coarse meshes with less node number,

surface is not approximated well enough

- 4. Dome: symmetry \longrightarrow aesthetic results
- 5. Higher node numbers for freeform structures: the mesh is distored for practical use Optimality criteria should be more complex (e.g. incuding maximal beam length)
- 6. Dense meshes: in certain cases (probably depending on failure the mode) relaxation results in the same mesh as the optimization fast process

Further investigations

Optimization

- Fitness function
- Very slow
- More realistic load cases multidisciplinary optimization

Settings of arc-length method

Imperfection

- Exact nonlinear analysis
- First eigenmode
- High effect on q_{cr}: 20÷90 %
- Depends on:
 - Surface
 - Mesh density, beam length
 - Scale

Imperfection sensitivity analysis before each optimization process

1.4

Literature

Fan, F., Cao, Z., Shen, S.: Elasto-plastic stability of single-layer reticulated shells. In: Thin-Walled Structures (2010) Vol. 48, pp. 827-836

Kato, S., Fujimoto, M., Ogawa, T.: Buckling Load of Steel Single-Layer Reticulated Domes of Circular Plan. In: Journal of the IASS (2005) Vol. 46, pp. 41-63

Dimcic, M.: Structural Optimization of Grid Shells based on Genetic Algorithms, Ph.D. dissertation. (2011) Kollár, L., Hegedűs, L.: Analysis and Design of Space Frames by the Continuum Method. Akadémiai Kiadó, Budapest, Hungary (1985)

Toğan V., Daloğlu AT.: Optimization of 3d trusses with adaptive approach in genetic algorithms. In: Engineering Structures (2006) Vol. 28, pp. 1019–1027

Thank you for your attention!

The work reported in the paper has been partly developed in the framework of the project "Talent care and cultivation in the scientific workshops of BME" project. This project is supported by the grant TÁMOP-4.2.1/B-09/1/KMR-2010-0002.

