A DUNAÚJVÁROSI DUNA-HÍD SZERKEZETI VÁLTOZATAINAK PARAMÉTERES VIZSGÁLATA

Honfi Dániel^{*}- Joó Attila László^{**} - Dunai László^{***} - Ádány Sándor^{****}

RÖVID KIVONAT

A cikk a Dunaújvárosi Duna-híd különböző szerkezeti változatainak paraméteres vizsgálatát mutatja be. Ismerteti 9 különböző geometriájú ívhíd végeselemes modelljén végrehajtott számítások eredményeit, és ezeket elemzi a kiválasztott statikai jellemzők alapján.

I. BEVEZETÉS

A Dunaújvárosi Duna-híd tervezése során előzetes paraméteres vizsgálatot hajtottunk végre, aminek célja az engedélyezési tervben kidolgozott hídszerkezet globális geometriai paramétereinek és kábelkialakításának elemzésével a legkedvezőbb statikai jellemzőkkel rendelkező variáns keresése volt. A szerkezeti változatok kiválasztásánál felhasználtuk a hasonló típusú hidak tervezése során nyert, irodalomban közölt tapasztalatokat [1], [2]. A cikkben bemutatjuk a vizsgálat hátterét, a vizsgálati program és a szerkezeti modellezés részleteit, a végrehajtott számítások eredményeit, majd a kiválasztott eredmények tükrében az erőjátékot jellemző egyes paraméterek hatását.

2. VIZSGÁLATI PROGRAM

2.1. Vizsgált szerkezetek

A paraméteres vizsgálat céljának megfelelően az engedélyezési tervben szereplő hídon kívül (1. (a) ábra) 8 különböző globális geometriájú hídmodellt vizsgáltunk meg. A paraméteres vizsgálatot két fő szempont szerint hajtottuk végre: az egyik szempont a különböző kábelerendezés hatásának a vizsgálata volt, míg a második vizsgálati csoportban – az egyik kábelvezetést kiválasztva – az ívmagasság csökkentésének, illetve növelésének a hatását elemeztük. A megvizsgált 8 esetben közös volt, hogy az engedélyezési tervben kidolgozott függőleges vezetésű kábelek helyett "V" elrendezésű kábeleket alkalmaztunk.

^{*} okl. építőmérnök, doktorandusz, BME Hidak és Szerkezetek Tanszéke

^{**} okl. építőmérnök, egyetemi tanársegéd, BME Hidak és Szerkezetek Tanszéke

^{***} okl. építőmérnök, Dr. habil, egyetemi tanár, BME Hidak és Szerkezetek Tanszéke

^{*****} okl. építőmérnök, PhD, egyetemi docens, BME Tartószerkezetek Mechanikája Tanszék

A kábelvezetés hatásának vizsgálatakor 5 különböző modellt vizsgáltunk meg. A különbség a kábelek számában volt: a V-alakban vezetett kábelek 3, 5, 6, 7 és 9 keresztkötés távolságonként csatlakoztak a pályaszerkezethez, illetve az ívhez. Ezeket az eseteket a 1. (a) ábrán mutatjuk be. Minden kábelbekötésnél egy-egy erősebb kereszttartót helyeztünk el, azokon belül pedig 3800 mm-enként egy-egy kisebb magasságú keresztkötést. A híd mindkét végét egy-egy végkereszttartó zárja le.

Az ívmagasság vizsgálatakor a '6'-os esetet vizsgáltuk meg részletesebben, összesen négyféle ívmagasságnál: 36, 45, 48 és 50 m (1. (b) ábra).

1. ábra: Kábelelrendezések (a) és ívmagasságok (b) a vizsgálati programban

geometriai közül globális méretek А а paraméteres vizsgálat minden modelljénél és az engedélyezési tervben szereplő hídnál is az ív dőlésszöge 72 fok, a teljes támaszköz 307,8 m, a pályalemez szélessége 36 m, a hossztartók távolsága 8,4 m, a járdakonzol kinyúlása pedig 2,4 m volt (2. ábra). A globális geometriai méreteken kívül az egyes szerkezeti elemek keresztmetszeti méretei és a pályalemez vastagsága (12 mm) is azonosak voltak.

2.2. Modellezés

Az előző pontban felsorolt hídszerkezetek végeselemes modellezését az Ansys [3] általános célú végeselem programmal végeztük el.

^{2.} ábra: Globális geometria értelmezése

Mindegyik szerkezetre egy felületszerkezeti és egy rúdszerkezeti modellt készítettünk. A modellépítés, a számítás és az eredmények kiértékelése egy Matlab-ben [4] írt program segítségével történt, teljesen automatizált módon.

2.2.1. Felületszerkezet A felületszerkezeti modellhez (3. ábra) az Ansys SHELL 63 nevű. négy-csomópontú, csomópontonként hat szabadságfokkal rendelkező héj elemét használtuk fel. Ilven elemmel modelleztük a merevítőtartókat, a hossztartókat, a pályalemezt, a keresztkötéseket és a kereszttartókat, valamint az ívet és az ívátkötéseket is. Az ortotróp pálvalemezben lévő bordák modellezésére a BEAM 24 nevű elemet használtuk, a kábelek modellezésére a csak húzóerőt felvenni képes LINK 10 elemet.

2.2.2. Rúdszerkezet A rúdszerkezeti modell (4. geometriai ábra) globális méretei megegyeztek a felületszerkezeti modell méreteivel, azzal az eltéréssel, hogy ebben az modelleztük esetben pályalemezt nem közvetlenül, hanem a hossztartó, a kereszttartó és a keresztkötés felső övét egy helyettesítő, (a pályalemez hatását figyelembe vevő) ún. együttdolgozó szélességgel modelleztük. A gerendák modellezéséhez a BEAM 44-es elemet használtuk, a kábelek modellezésére a felületszerkezeti modellben is használt LINK

3. ábra: Felületszerkezeti modell

4. ábra: Rúdszerkezeti modell

10-es elemet. A rúdszerkezeti modellben a pályalemez és a főtartók együttdolgozása nem (vagy csak alig) jelenik meg, bár ezt viszonylag könnyen el lehetne érni (pl. hídvégi merevítések alkalmazásával), modelljeinkben – a vizsgálat ezen szakaszában – mégsem alkalmaztuk, hanem a pályalemez szerkezeti viselkedésre gyakorolt hatását a kétfajta (héj- és rúd-) modell eredményeinek összehasonlításával elemeztük.

2.3. Számítások

2.3.1. Lineáris számítás Lineáris analízist az engedélyezési tervben alkalmazott, és az 5. ábrán látható 1, 2. és 4. teherkombinációkra hajtottunk végre. Az állandó teher mellett a hasznos megoszló terhet az első teherkombinációban totális, a másodikban és negyedikben parciális leterhelésként alkalmaztuk a híd egyik felében, illetve a középső részén.

2.3.2. Stabilitásvizsgálat Stabilitás-vizsgálatot az 1. és a 2. teher-kombinációkra hajtottunk végre, csak a rúdszerkezeti modellen, ahol kritikus teherszorzókat és a kihajlási alakokat vizsgáltuk.

2.3.3. Rezgésvizsgálat Mind a felületszerkezeti, mind a rúdszerkezeti modelleken meghatároztuk a vizsgált szerkezetek önrezgésszámait és a hozzájuk tartozó rezgésalakokat.

5. ábra: Teherkombinációk

3. EREDMÉNYEK

3.1. Lehajlások és feszültségek

Általánosságban elmondható, hogy a lehajlások és feszültségek tendenciáikban mindhárom teherkombináció esetén hasonlóak, a 2. teherkombináció esetén a nyomatéki ábra lefutása valamelyest eltért a másik kettőétől, de a szélsőszálfeszültségek között lényeges különbséget nem tapasztaltunk. A következőkben ismertetett ábrákon DHF-fel jelöltük a felületszerkezeti, DHR-rel a rúdszerkezeti modellből kapott eredményeket. A vízszintes koordinátatengelyeken feltüntetett számok rendre, a kereszttartó-távolságot és az ívmagasságot (méterben), illetve az ív vízszintessel bezárt dőlésszögét (fokban) jelölik (ahol ez utóbbi egyébként állandó).

3.1.1. Lehajlások A különböző hídmodelleken számolt maximális lehajlásokat a 6. ábra mutatja be a kábelkiosztás, illetve a maximális ívmagasság függvényében. A két modell eredményei között viszonylag jelentős különbség van: a héjmodell 20-25%-kal kisebb lehajlásokat eredményez. A lehajlások különbsége két hatásból származik: a terhelések közötti különbségből, és a modellek merevség-különbségéből.

A terhelések különbözősége kisebb részt a két modell közötti – részben kompenzált – anyagtöbbletből, nagyobb részt a pályaszerkezet eltérő modellezéséből adódik, a merevségbeli különbséget pedig elsősorban a pályaszerkezet modellezésének eltérése okozza.

Megfigyelhető, hogy a lehajlások a kábelkiosztás ritkításával nőnek (6. a. ábra). A tendencia nem lineáris: a 3-as és 6-os kábelkiosztás között a különbség rendre 3, illetve 8% a rúd-, illetve héjmodellre, míg a 3-as és 9-es kiosztás között 12, illetve 20%.

6. ábra: Lehajlások a kábelkiosztás (a) és az ívmagasság (b) függvényében

A 6. (a) ábra alapján összevethető a függőleges és ferde kábelezés közötti különbség is: függőleges kábelezés esetén mintegy 15, illetve 25%-kal nagyobb maximális lehajlási értékeket kaptunk (rúd-, illetve héjmodellre). Az ívmagasság növelésével a merevség nő, vagyis a lehajlások csökkennek (6. (b) ábra). A 45 m-es magasság 50 m-esre való növelése kb. 9%-os lehajlás-csökkenést eredményez.

3.1.2. Kábelfeszültségek A különböző modelleken számított maximális kábelfeszültségeket mutatja be a 7. ábra. Minthogy a különböző modellekben a kábelek keresztmetszetét nem változtattuk, a kábelfeszültségek és kábelerők között egyenes arányosság van, tehát az ábrákon látható tendenciák közvetlenül érvényesek a kábelerőkre is.

7. ábra: Kábelfeszültségek (a) a kábelkiosztás és (b) az ívmagasság függvényében

A szimmetrikus teherkombinációk esetén a maximális kábelerőket a híd végeinél kaptuk, ahol egyrészt a nyíróerő is maximális, másrészt a kábelek ferdesége is a legnagyobb. Továbbá mindig a "húzott rácsrudaknak" megfelelő állású kábelekben lesz nagyobb az erő.

Megállapítható, hogy a kábelezés ritkításával a kábelerők nagyjából lineárisan nőnek. A 9-es kábelelrendezés pl. a 3-ashoz képest héjmodell esetén kb. 3-szoros, de rúdmodell esetén is több mint 2-szeres erőt/feszültséget ad (7. (a) ábra).

A héj- és rúdmodell azonos esetekre vonatkozó eredményei közötti eltérést minden bizonnyal most is a pályaszerkezetek merevségei közötti eltérésben kell keresni: a héjmodell merevebb pályaszerkezete a globális nyíróerőnek nagyobb hányadát képes felvenni, mint a rúdmodell hossztartói, így a kábelekben kisebb erők ébredhetnek.

3.1.3. Ívtartó feszültségek Az ívtartó középső keresztmetszetében ébredő feszültségeket mutatja be a 8. ábra a kábelkiosztás, illetve az ívmagasság függvényében.

8. ábra: Ívtartó feszültségek a kábelkiosztás (a) és az ívmagasság (b) függvényében

A 8. (a) ábrán a híd középső keresztmetszetéhez tartozó szélsőszál-feszültségek vannak feltüntetve különböző kábelelrendezés mellett. Megfigyelhető, hogy az átlagfeszültség (mely arányos az ívben ébredő nyomóerővel) gyakorlatilag állandó, azaz nem függ a kábelkiosztás sűrűségétől (180 N/mm²). További fontos megfigyelés, hogy a rúdszerkezeti modell és a felületszerkezeti modell alapján számolt átlagfeszültségek gyakorlatilag megegyeznek, ami a modellek és számítások helyességére vonatkozó ellenőrzésnek is alkalmas, hiszen az egyezés szükségességét a hídszerkezet (mint kéttámaszú tartó) keresztmetszeteinek egyensúlyára vonatkozó egyszerű statikai megfontolások igazolják. Látható, hogy a középső keresztmetszetben a szélsőszálfeszültségek különbsége (azaz a nyomaték) nő a kábelsűrűség csökkentésével, de ez általánosságban nem igaz, csak annyit mondhatunk, hogy a nyomatékok eloszlása változik a kábelkiosztás sűrítésével. (Ugyanakkor nyilvánvalóan igaz, hogy egy megfelelően ritka kábelelrendezés nagyobb nyomatékokat eredményez, mint egy sűrű kábelelrendezés.)

A 8. (b) ábra az ívmagasság hatását mutatja. Az ívben ébredő normálerő csökken az ívmagasság növelésével, míg a nyomatékokra az eredmények alapján nem lehet tendenciát meghatározni, csupán annyit jelenthetünk ki, hogy az ívmagasság változása megváltoztatja a nyomatéki ábrák lefutását.

A függőleges és ferde kábelvezetés közti különbségeket a 8. a. ábra szemlélteti. Megállapítható, hogy héjmodell esetén lényeges különbség nincs a kétféle kábelvezetés között, de a rúdmodellek is tendenciájukban hasonló eredményeket adnak. *3.1.4. Merevítőtartó feszültségek* A merevítőtartók feszültségeit mutatja be a 9. ábra a kábelkiosztás, illetve az ívmagasság függvényében a középső keresztmetszetben. Minden egyes modellhez feltüntettük a középső keresztmetszetben számított maximális és minimális normálfeszültségeket.

9. ábra: Merevítőtartó feszültségek a kábelkiosztás (a) és az ívmagasság (b) függvényében (középső keresztmetszet)

A kétféle modell jelentős eltérést mutat: a rúdmodellel számolt átlagfeszültség lényegesen nagyobb. Ennek az eltérésnek az oka, hogy a rúdmodell esetén a hídszerkezet alsó részén döntően a merevítőtartók veszik fel a húzóerőket, míg a modell hossztartóiban ébredő átlagfeszültség (és normálerő) közel zérus. Héjmodell esetén ugyanakkor a merevítőtartókban és a hossztartókban ébredő átlagfeszültségek lényegében megegyeznek, ami arra utal, hogy a pályalemez tárcsahatása következtében az egész pályaszerkezet együttdolgozik a merevítőtartókkal, ami kisebb átlagos normálfeszültséget eredményez. Rúdmodell esetén a szélsőszál-feszültségek közötti eltérés általában nagyobb, mint amit héjmodellel számolhatunk. A két modell közötti különbség a középső keresztmetszetben tűnik a legnagyobbnak. Oka most is a pályaszerkezetek különböző modellezésében keresendő.

A különböző keresztmetszetekben az átlagos normálfeszültség (és így a normálerő) közelítően megegyezik. A nyomatékok azonban természetesen változnak a merevítőtartó hossza mentén, ami változó szélsőszál-feszültséget okoz.

A merevítőtartó középső keresztmetszetében a feszültségek gyakorlatilag nem függnek a kábelkiosztás sűrűségétől (9. (a) ábra), de mind az átlagfeszültség, mind a nyomatékok csökkennek az ívmagasság növelésével (9. (b) ábra).

3.2. Kritikus teherszorzók

Az 1. és 2. teherkombinációban meghatároztuk a stabilitásvesztéshez tartozó kritikus teherszorzók értékeit, illetve a stabilitásvesztéshez tartozó sajátalakokat. A számításokat csak a rúdmodelleken hajtottuk végre. Az első stabilitásvesztéshez tartozó kritikus teherszorzók értékeit a 10. ábrán mutatjuk be.

10. ábra: Kritikus teherszorzók a kábelkiosztás (a) és az ívmagasság (b) függvényében

Az 1. teherkombinációban a 45 m ívmagasságú, különböző kábelelrendezésű tartók esetén a kritikus teherszorzók értékei a 3.04 és 3.47 közötti tartományban helyezkednek el. A legnagyobb érték a 6-os kábelelrendezésnél jelentkezik. Hasonló tendencia figyelhető meg a 2. kombinációban is, de itt a kritikus teherszorzók értékei a 4.25 - 4.90 tartományban vannak. A két teherkombináció közötti jelentős különbség csak látszólagos. Hiszen, figyelembe véve, hogy a 2. teherkombinációban az összterhelés az 1. teherkombinációnak közelítően 3/4-e, látható, hogy a stabilitásvesztés mindkét kombinációban közel ugyanakkora összterhelés mellett következik be. A kábelelrendezés viszonylag csekély hatása pedig annak köszönhető, hogy a kritikus stabilitásvesztés minden esetben globális: az ívek együttes, oldalirányban bekövetkező kihajlása.

A 10. (b) ábrán az ívmagasság változásának hatása figyelhető meg. A tendencia mindkét teherkombinációban egyértelmű és azonos: az ívmagasság növelésével a kritikus teherszorzó értéke nő. Ebben a növekedésben valószínűleg fontos szerepe van annak, hogy az ívek ferdesége miatt az ívmagasság növelésével az ívek relatíve közelebb kerülnek egymáshoz, ami által az ívek közötti átkötő-gerendák hossza csökken. Emiatt viszont a két ív együttes oldalirányú merevsége nőhet.

A függőleges és ferde kábelvezetés közötti különbség látható még a 10. (a) ábrán. Az 1. teherkombinációban a függőleges kábelelrendezés valamivel nagyobb kritikus teherszorzót eredményezett, de az alkalmazott teher valamelyest kisebb volt.

3.3. Sajátfrekvenciák

A vizsgálatok során meghatároztuk a különböző modellek néhány jellegzetes sajátrezgésalakját, illetve sajátfrekvenciáját. Héjmodellek esetén a jellemző rezgésalak az egész modell függőleges síkú, illetve a pályaszerkezetnek a híd hossztengelye körüli elcsavarodó rezgése, rúdmodellek esetén a pályaszerkezet vízszintes síkú, illetve a híd függőleges rezgése volt. Összehasonlításnak csak az azonos – jelen esetben a függőleges – rezgésalakoknál volt értelme, illetve a hozzájuk tartozó önrezgésszámoknak, melyek gyakorlatilag meg is egyeztek a két modell esetén (11. ábra). Bár a rúdmodell kb. 20%-kal kisebb súlyú, mint a héjmodell, azonban függőleges merevsége is kb. ennyivel kisebb. Az önrezgésszám a szerkezet tömegével fordítottan, míg merevségével egyenesen arányos, ez magyarázza az eredmények egyezését.

11. ábra: Sajátfrekvenciák a kábelkiosztás (a) és az ívmagasság (b) függvényében

A 11. (a) ábráról látható, hogy a kábelsűrűség csökkentésével a hajlítórezgéshez tartozó önrezgésszám kismértékben nő. Rúdmodellek esetén 0.6-0.7, héjmodellek esetén 0.6-0.8 között változnak az értékek (de rúdmodellek esetén a 6-os, 7-es és 9-es kábelelrendezéshez tartozó értékek gyakorlatilag megegyeznek).

Az ívmagasság növelése kismértékben csökkenti az önrezgésszámokat (lásd 11. (b) ábrát), de a csökkenés inkább csak a héjmodelleknél jelentkezik. Az ábrák szerint a pályaszerkezet vízszintes rezgéséhez tartozó önrezgésszámok jóval kisebbek a függőlegesnél. E rezgésalak azonban a valóságban nem fordulhat elő, mert a tényleges pályaszerkezet lényegesen nagyobb vízszintes merevséggel rendelkezik, mint ami a rúdmodellben van. Ez az oka annak is, hogy héjmodellel ez a rezgésalak nem jelent meg.

A 11. (a) ábra szemlélteti a függőleges és ferde kábelvezetés közötti különbséget is. Amint az ábráról látható, a ferde kábelvezetés mintegy 1.5-szeresére növeli az önrezgésszámot a függőlegeshez képest, ami igen jelentős, kedvező hatás.

Szintén kedvező, hogy a szerkezet függőleges síkú globális rezgéséhez és elcsavarodó rezgéséhez tartozó önrezgésszámok nincsenek nagyon közel egymáshoz: az elcsavarodó rezgés sajátfrekvenciája közelítően 1.5-szerese a függőleges rezgésének, ami a szerkezet dinamikus stabilitása szempontjából kedvező arány.

4. ÖSSZEFOGLALÓ MEGÁLLAPÍTÁSOK

A kutatási jelentésben bemutatott paraméteres vizsgálatok eredményei alapján az alábbi összefoglaló következtetéseket tettük:

V-alakú kábelvezetés jelentősen megnöveli a szerkezet függőleges merevségét a függőleges kábelezésű szerkezethez képest. A lehajlásbeli különbség szimmetrikus terhek esetén kb. 20, aszimmetrikus terhek esetén pedig kb. 40 %. A V-alakú kábelek ritkításával a lehajlás növekszik; a szélső esetek (3-as és 9-es kiosztás) közötti eltérés kb. 15 %-os. Az ívmagasság növelésével a szerkezet függőleges merevsége növekszik: az 50 m-es ív lehajlása kb. 10 %-kal kisebb, mint az azonos kábelkiosztású 45 m-es ívé.

A kábelvezetés változtatása azonos ívmagasság és szimmetrikus terhelés esetén nem módosítja jelentősen a főtartószerkezet feszültségeit. Aszimmetrikus teher esetén azonban az ívben kialakuló – méretezés szempontjából mértékadó – feszültségek maximális értékben kb. 10 %-kal csökkennek V-alakú kialakítás esetén a függőleges kábelekhez képest. V-alakú kábelvezetés esetén az ívmagasság változásával lineárisan csökkennek a főtartó feszültségei. A főtartószerkezet erőjátékában jelentős hatással bír a pályaszerkezet együttdolgozása, mind a merevség, mind pedig a feszültségeloszlás szempontjából. A sűrűn vezetett kábelezés (3-as kialakítás) esetén aszimmetrikus terhekre a nem terhelt oldali függőlegesen kialakított kábelekben a feszültség jelentősen csökken, míg a V-alakban vezetett kábelek "nyomott" fele lelazul. Ritkábban alkalmazott V-alakú kábelezés esetén nem tapasztalható lelazulás aszimmetrikus terhek esetén sem. A kábelerők a V-alakban vezetett kábelek ritkításával kb. lineárisan nőnek.

A kábelvezetés különböző V-, illetve függőleges kialakítása nem befolyásolja jelentősen a főtartószerkezet lineáris kritikus terhét. Azonos V-alakú kialakítás és növekvő ívmagasság esetén a kritikus teher növekszik (a szélső esetek közötti eltérés kb. 10-15 %). Különböző V-alakú kábelkialakítások esetén a pályaszerkezet hajlítórezgéséhez tartozó önrezgésszám alig változik; ez az érték jelentősen, kb. 50%-kal nagyobb, mint függőlegesen vezetett kábelek esetén. V-alakú kábelvezetés esetén a csavaró- és hajlítórezgésekhez tartozó önrezgésszámok aránya kb. 1.5-szeres.

A paraméteres vizsgálat eredményei azt mutatják, hogy az engedélyezési tervben alkalmazott függőleges kábelvezetés helyett alkalmazott V-alakú kábelekkel statikai szempontból kedvezőbb erőjátékú szerkezet tervezhető. Egyéb – esztétikai és konstrukciós – szempontok alapján azonban a további tervezésre kiválasztott változat az engedélyezési tervben szereplő szerkezeti kialakítás maradt.

HIVATKOZÁSOK

- [1] Yoshikawa O. Sugiyama I. Kurimoto H. Aketa H.: Construction of the Shinhamadera Bridge, *Stahlbau*, 62 (1993), H. 5, pp 125-136.
- [2] Nakai H. Kitada T. Kunihiro M. Kitazawa M. Hasino F.: Proposition of Methods for Checking the Ultimate Strength of Arch Ribs in Steel Nielsen-Lohse Bridges, *Stahlbau*, 64 (1995), H. 5, pp. 129-136.
- [3] ANSYS, Rainbow Technologies, Inc.
- [4] Matlab 6.1, Copyright 1984-2004, The MathWorks, Inc.