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Abstract 
 
The dynamic behaviour of bent reinforced concrete beams in elastic range is 
significantly influenced by cracks caused by former loads. Considering this fact a 
more accurate calculation of the eigenfrequencies of the beams subjected to 
dynamic effects is available.  
      Experiments have shown that the features of vibration differ from the results 
obtained by the well-known linear model, if cracked zones exist. The cause of 
this phenomenon is that the bending rigidity of the cross-sections in the cracked 
range depends on the sign of the actual bending moment. The flexural stiffness of 
the cracked reinforced concrete beam, in bending vibration, changes periodically. 
Therefore the vibration shows non-linear characteristics in the elastic range as 
well. The cracked zone causes geometric non-linearity.   
      For a detailed investigation of the problem, experiments and linear and non-
linear analysis were performed.   
 
1 Introduction 
 
The dynamic behaviour of the cracked reinforced concrete beam was examined 
by experiments in the Laboratory of Reinforced Concrete Structures at the 
Technical University of Budapest [1]. 

First, in that experiment in the middle third part of the examined reinforced 
concrete beam cracks were induced by so large P forces, where the bending 
moment exceeded the cracking moment (Fig. 1).   
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Figure 1. Model used at the experiments 

 
 

After removing the static P forces, the beam was brought into vibration with 
an exterior impact load, by a rubber hammer blow. According to the spectral 
decomposition of the time-deflection series (Fig. 2), the first eigenfrequency 
resulted in 98 Hz. In addition a secondary peak has also appeared at 89 Hz. 

 
 

Figure 2. Time-deflection spectrum obtained in the experiment 
 
 

If the beam will be considered free from cracks, then the eigenfrequencies 
can be determined in an elementary way with the well-known formula (1) [2]: 
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The first three eigenfrequencies of the uncracked beam are displayed in Table 1.  
 
 

Table 1. 
 f1 [Hz] f2 [Hz] f3 [Hz] 

Elementary calculation 109 436 981 
 
According to expectations, the first eigenfrequency of the uncracked beam is 

larger than the result shown in the experiment. The cause of this difference is that 
during the vibration the bending rigidity of the cross-sections in the cracked range 
is not constant. It depends, whether cracks close or open. If cracks were caused 
by positive moments, the flexural stiffness of the beam in the cracked zones can 
be described with the formula below:  
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where: Ii,I is the moment of inertia of the uncracked section and Ii,II is that of  the 
cracked section.  

So the vibration shows non-linear characteristics in the elastic range as well. 
In this case only virtual eigenfrequencies could be investigated. 
 
2 The computation method 
 
The dynamic behaviour of the cracked beam in the elastic range, can be described 
by the well-known differential equation with varying coefficients [2]: 
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where: x is the coordinate in axial direction, w(x,t) is the displacement  
perpendicular to the axis of the beam, EI(x)  is the flexural stiffness, cs and c are 
the damping coefficients, m(x)  is the specific mass per unit length and q(x,t)  is 
the external distributed load.  

The solution of the non-linear vibration problem needs discretising in time 
and in space. The discretising in the axial direction was made with the difference 
method. The beam model (Fig. 1) was in the calculation divided in 18 equal parts 
along the longitudinal axis. For the description of the relationship between the 
bending moment and the deflection eqn (4), as well as of the relationship between 
the loading and the bending moment eqn (5), the difference operators were used: 
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where: ∆l is the distance of the dividing points. 
 

Making use of eqns (3), (4), (5), the equation of motion for the discrete 
system, eqn (6) can be assembled. In the equation below the {u} vector contains 
the wi vertical displacements of the nodal points. 
 

[ ]{ } [ ]{ } [ ]{ } { }F(t)üMuCuK =++ &     (6) 
 
With the difference operators the [K] stiffness-, [C] damping- and [M] mass 
matrices can be composed. In this computation the Rayleigh damping was 
applied. The damping matrix was assembled as a linear combination of the 
stiffness- and mass matrix:  
 

[ ] [ ] [ ]MbKaC +=       (7) 
 

The application of the Rayleigh damping results in uncoupled mode shapes, 
similarly to the undamped case [2].  

The equation of the motion (6) contains already the boundary conditions, the 
hinged supports at both ends of the beam. In the case of constant flexural stiffness 
in time, the modal solution of the vibration problem can be obtained by eqn (6).  

Considering the non-linear properties, due to the relation (2), makes it 
necessary the discretising in time, by applying a time-step algorithm. For that 
purpose the method of central differences was used. To insure convergence and 
adequate accuracy, the time-step must be considerably shorter than the smallest 
vibration period in the model [3]. The applied algorithm is based on constant 
acceleration within the time-steps. 

On basis of the above method a MATLAB program was elaborated. 
 
3 Numerical investigations 
 
With the MATLAB program there were numerical simulations carried out on the 
linear and non-linear computing model of the beam in Fig. 1. For the sake of a 
detailed analysis of the dynamic behaviour of the beam the non-linear analysis 
was performed both with and without considering the gravitational forces.   
 
3.1 Examinations on the linear model 
 
The linear vibration problem can be solved assuming a constant flexural stiffness 
in time. This makes possible the estimation of the virtual eigenfrequencies of the 
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beam in Fig. 1, by giving upper and lower boundaries. A lower boundary can be 
obtained, if in the cracked region the smaller flexural stiffness EIII is substituted 
and regarded as constant in time. This would be the model of a beam in which 
cracks are produced in the middle third region at both faces by positive and 
negative moments (weakened beam). To obtain the upper boundary for the 
investigated eigenfrequencies, the greater flexural stiffness EII should be applied 
in the middle part. With this constant EII an uncracked beam is modelled. 

In the undamped case, the eigenfrequencies can be derived, by solving the 
eigenvalue problem, coming from eqn (6): 
          

([K]- 2
iω [M]){ui} = 0      (8) 

 
With making use of the computing model the first three eigenfrequencies of the 
uncracked beam and of the weakened beam was determined. The results are 
shown in Table 2. It can be seen that the first virtual eigenfrequency obtained in 
the experiment is surrounded by the results of the linear calculations: the beam 
without crack (upper boundary) and the weakened beam (lower boundary). 
 
                 Table 2. 
 f1 [Hz] f2 [Hz] f3 [Hz] 

Linear computation, uncracked beam 109 436 981 
Experiment, real beam   98   
Linear computation, weakened beam   85 397 862 

  
 
3.2 Examinations on the non-linear model, neglecting the gravitational forces 
 

Considering the periodically varying flexural stiffness in time (2), on the 
non-linear model a free vibration problem was examined. For this purpose an 
impact load was modelled in the section x=l/3, as follows: 
 

⎩
⎨
⎧

=
0

),( 0F
xtF  

if
if   

tt
tt

∆>
∆≤

  
and

 
3/l=x

  (9) 

 
This corresponds essentially to the experiment carried out on the beam 

presented in Fig. 1. In order to establish stability in the explicit method, the ∆t 
time-step was chosen as very small [3], that is 1/1000 of the first eigenperiod of 
the uncracked beam. The power acting in ∆t corresponds to one Dirac impulse. 
The Dirac unit pulse is representing a square-wave with a length of time tending 
to zero, while it’s definite integral equals 1 unit. A 1 sec time-interval of the 
vibration was examined, into which 109000 time-steps fell. In Fig. 3 the time-
deflection  diagram  is given  at  the cross-section  x=l/3,  between   time-steps  
1-4000.  
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Figure 3. Time-deflection diagram immediately after the load impulse 
 
 

Fig. 3 demonstrates properly that the Dirac impulse induces all 
eigenfrequencies (white noise [2], [4]). 

The virtual eigenfrequencies of this quasi-periodical motion was determined 
by discrete Fourier transformation [5] of the time-deflection data series. On Fig. 4 
it can be seen that the spectrum range 0-500 Hz contains the first two 
eigenfrequencies. The third eigenfrequency did not appear, because mode shape 3 
has a nodal point in the cross-section of the impact load action. The first virtual 
eigenfrequency according to Fig. 4 was 96 Hz. It means that the non-linear 
calculation and the experiment have shown a good coincidence. 
 

0 100 200 300 400 500

frequency

[Hz]

S
spectral
deflection

 
   

  Figure 4. The spectral decomposition of the time-deflection 
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3.3 Examinations on the non-linear model considering the gravitational 
forces 

 
The computation model in Chapter 3.2 does not show the spontaneous separation 
of the first eigenfrequency, namely the existence of the secondary peak in Fig. 2. 
To the first eigenmode belongs only one virtual eigenfrequency (Fig. 4).  

However, when taking into consideration the self-weight, the situation 
changes. Due to the self-weight cracks open in the middle region, already in the 
static condition. Thus the stepwise change of the flexural stiffness is the 
following:         
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This means a shifting of the base line compared with relation (2). In case of a 
sufficiently large starting impulse, in the first part of the observed vibration the 
cracks still close in each period when negative resultant moment arises. In the 
second part of the time-interval as dynamic moment becomes smaller due to 
damping, the cracks will not close. The double peak can appear in the spectrum if 
there is an appropriate relation among the starting impulse, the self-weight and 
the damping. 

Taking the self-weight into assumption, the vibration spectrum was 
produced by the Wilson type time-step integral, which is shown in Fig. 5. In this 
calculation Rayleigh damping was applied. The linear combination (7) had been 
chosen so that it showed in case of the uncracked beam in the first mode 1.5% 
and in the third mode 10% damping. That means a damping between 1.5-2%, 
near the first virtual eigenfequency of the cracked beam.  
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Figure 5. Double peak in the spectrum of the beam model 
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The first virtual eigenfrequencies, according to the spectrum, have the 
values in 87 Hz and 94 Hz. In the experiment these frequencies have been found 
to be 89 Hz, and 98 Hz. 

The main peak (94 Hz) derived from this non-linear analysis with self-
weight is a little smaller than the 96 Hz, obtained from the previous non-linear 
calculation without self-weight. That is because of the self-weight, the smaller 
flexural stiffness of the cracked section is valid for a little longer segment of the 
periods than before. The secondary peak represents a larger frequency than the 
lower boundary 85 Hz, obtained from the linear calculation of the weakened 
beam. It is worth mentioning that the double peak here does not mean two 
frequencies of a quasi-resonant state. The essence of the phenomenon is that the 
examined interval of the vibration is divided into two parts. In the first part the 
cracks still close, but in the second part they do not. This is due to the decreasing 
vibration amplitude. In case of forced harmonic vibration of continuously 
increasing frequency, only one quasi-resonant state can be found in the first 
mode. 

The results of the non-linear examinations are summed up in Table 3. 
 
              Table 3. 
 f1 [Hz] f2 [Hz] 

Non-linear computation, without self-weight          96 414 
Non-linear computation, with self-weight 87,    94  
 

In general cases, when considering different ratios of static loads (containing 
the self-weight) and dynamic loads, the virtual eigenfrequency falls in an interval 
determined by two extreme cases: 
1. When large self-weight or static forces are coupled with small dynamic loads, 

the vibration of the beam is similar to the behaviour of the weakened beam in 
chapter 3.1.  

2. When the static loads are relatively small compared with the dynamic loads, 
the vibration of the beam is similar to the case shown in chapter 3.2. 

 
4. Approximation of the first two virtual eigenfrequencies 
 
The first two virtual eigenfrequencies of the non-linear vibration can also be 
found by combination of simple linear models, when neglecting the gravitational 
forces. 
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4.1 Approximation of the first virtual eigenfrequency, with a single-degree-

of-freedom model 
 
The approximate value of the first eigenfrequency can be obtained, from non-
linear vibration of the single-degree-of-freedom (SDOF) system (Fig. 6). 
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Figure 6.  SDOF Model 
 
 

In the vibrating system (Fig. 6) the M, KI, CI  elements represent the closing 
of the cracks, while the M, KII, CII, elements represent the opening. Therefore, one 
period of the examined vibration consists of two different pieces of half sine-
waves with different periods and different amplitudes. The length of the period of 
this (quasi periodic) motion is given by the sum of the two different half-periods. 
Consequently the virtual eigenfrequency f1

*, can be calculated from the relation 
(11), which resulted in 95.8 Hz: 
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where: f1

I is the first eigenfrequency of the uncracked beam, f1
II  represents the   

eigenfrequency of the weakened beam, found by linear calculation with flexural 
stiffness  EIII  in the cracked zone. 

To the calculation of f1
I the well-known closed formula is available. To 

compute the f1
II the modal analysis on the discrete system is applicable.  

 The formula (11) approaches the first virtual eigenfrequency of the beam 
represented in Fig. 1, fairly well. 

 
4.2 Approximation of the second virtual eigenfrequency, with linear models 
 
The second virtual eigenfrequency of the cracked beam can be approximated also 
with simple linear models, applying the modal analysis. 
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The non-linear vibration of the beam in Fig. 1 is started with an initial 
velocity distribution of a full sine-wave, which is typical for the second mode of 
the uncracked beam. In Fig. 7 can be seen the different phases of the vibration. 
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Figure 7.a  Eigenmode and static system in time t = 0 
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Figure 7.b     Figure 7.c 
  Eigenmode in the first half-period   Eigenmode in the second half-period 
    
 

When starting the vibration, in time t=0 the inflexion point of the mode-
shape is at the midspan (Fig. 7.a). Therefore it can be modelled with the vibration 
of a two-span beam with distances of l/2 between the supports. 

  In the first half-period (Fig. 7.b) in the cracked zone, on right of the 
inflexion point, the cracks open. The flexural stiffness therefore takes here the 
value EIII. On the left of the inflexion point the cracks close, so the flexural 
stiffness remains still EII. Because of the asymmetry of the stiffness distribution, 
the inflexion point moves continuously to the left. Therefore the length of the 
region with flexural stiffness EIII slightly increases. The extreme position will be 
reached, after a quarter of period. In the second half-period (Fig. 7.c) the stiffness 
distribution is mirrored at the midspan. The length of the region with stiffness EIII 
varies in the same way, as in the first half-period. 

In this sense the inflexion point is oscillating around the midspan according 
to the virtual eigenfrequency. So in the second mode of the non-linear vibration, 
during one period, the length of the section with flexural stiffness EIII  is changing 
periodically. For the determination of the second virtual eigenfrequency, a better 
approximation of the upper and lower boundary can be given, with the 
combination of linear models, as in Table 2. 
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The model according to Fig. 7.a gives the upper boundary of the second 
virtual eigenfrequency. In the time t=0 the length of the region with the EIII  
bending rigidity is the smallest (l/6).  

The configuration in Fig. 7.b at time t=T/4 supplies the lower boundary of 
the second virtual eigenfrequency. In that case the length of the zone with flexural 
stiffness EIII  is the largest (>l/6). 

A modal analysis on a finite-element model with a fine mesh has shown that 
the displacement of the inflexion point is small. It causes in the eigenfrequency a 
change less than 1%, which is 417.6 Hz in case Fig. 7.a and 417.4 Hz in case Fig. 
7.b.  
 
5 Comparison of the experiments and the calculations     
 
The results of the experiments and the calculations are summarized in Table 4. 
The calculations of non-linear examinations and simplified linear models show 
good coincidence with the experiments. Table 4 shows that the combination of 
simplified linear models can be applied with good results, for analysing non-
linear vibrations. The double peak, which appeared in the spectrum of 
experiments, can be obtained also by numerical simulation. 
 
    Table 4.  

 f1 [Hz] f2 [Hz] 
Experiment, real beam  89,     98  
Linear computation, uncracked beam         109 436 
Linear computation, weakened beam           85 397 
Non-linear computation, without self-weight           96 414 
Non-linear computation, with self-weight 87,     94  
Approximate simplified models              95.8            417.5 
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