Kontinuummal modellezhető szerkezetek frekyenciaanalízise

Forgásparaboloid-héj vizsgálata
 Berepedt vasbeton gerendák vizsgálata

Ph.D. értekezés Huszár Zsolt Dr. univ

1. Forgásparaboloid-héj dinamikai vizsgálata

Szakirodalmi háttér: Felületszerkezetek, általános héjelmélet, hajlított lapos héjak

Girkmann, K. (1954): "Flächentragwerke"; Bölcskei, E. és Orosz, Á (1973): "Héjak"; Flügge, W. (1973): "Stresses in Shells"; Soedel, W. (1986): "Vibration of shells and plates"; Hegedűs, I. (2000): "Héjszerkezetek";

Az utóbbi évtizedben a héjszerkezetek rezgéseivel kapcsolatban:

Shang, Xin-Chun (2001): "An Exact Analysis for Free Vibration of a Composite Shall Structure Hermetic Capsule".
Kabir, H. R. H. (2002): "Application of linear shallow shell theory of Reissner to frequency response of thin cylindrical panels with arbitrary lamination".
Altekin, M. and Yükseler R. F. (2008): "A Parametric Study on Geometrically Nonlinear Analysis of Initially Imperfect Shallow Spherical Shells".
Touse, C. at al. (2008): "Effect of Imperfections and Damping on the Type of Nonlinearity of Circular Plates and Shallow Spherical Shells".

Célkitűzések

Értekezésem 1. fejezetében a lapos forgásparaboloid-héj rezgésvizsgálatával foglalkozom. E területen az alábbi célkitűzéseimet valósítottam meg:

- Új analitikus eljárás kidolgozása a lapos forgásparaboloid- ill. zárt gömsüveghéjak rezgését leíró differenciálegyenlet-rendszer megoldására:
 - nyírási alakváltozások nélkül,
 - nyírási alakváltozások figyelembevételével.
- A frekvenciaegyenlet előállítása, a sajátfrekvenciák és rezgési alakok meghatározására.
- Számítási algoritmus és program kidolgozása (MATLAB).
- Szabadon lebegő szerkezet sajátfrekvenciáinak számítása és rezgési alakjainak előállítása.
- Az analitikus számítás eredményeinek ellenőrzése alternatív számítási eljárással, az ANSYS végeselem programmal.
- Parametrikus vizsgálatok végzése annak megállapítására, hogy a geometriai jellemzők hogyan befolyásolják a sajátfrekvenciákat.

Forgásparaboloid-héj dinamikai vizsgálata nyírási alakváltozás nélkül

Lehetséges alkalmazása: az űrben szabadon lebegő tányérantenna.

A megoldásnál a következő alapfeltevések vannak érvényben:

- a héj lapos és vékony,
- anyaga rugalmas és izotróp,
- a lehajlások kicsinyek és a középfelületre merőlegesek,
- a forgási tehetetlenségtől eltekintünk.

A rezgés parciális differenciálegyenlet-rendszere:

A szabadon lebegő szerkezetre 4 peremfeltétel adható meg az r = a sugarú peremkörön. Ezek polárkoordináta-rendszerben:

A radiális membránerő, a csúsztatóerő null-értékűsége alapján:

A radiális hajlító-, a csavarónyomaték és a nyíróerő nullértékűsége alapján:

$$\frac{1}{r}\frac{\partial F}{\partial r} + \frac{1}{r^2}\frac{\partial^2 F}{\partial \vartheta^2} = 0 \qquad -K\left[\frac{\partial^2 w}{\partial r^2} + v\left(\frac{1}{r}\frac{\partial w}{\partial r} + \frac{1}{r^2}\frac{\partial^2 w}{\partial \vartheta^2}\right)\right] = 0$$
$$-\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial F}{\partial \vartheta}\right) + \frac{K(1-v)}{R}\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial w}{\partial \vartheta}\right) = 0 \qquad -K\frac{\partial}{\partial r}(\Delta w) - \frac{K(1-v)}{r}\frac{\partial^2}{\partial r\partial \vartheta}\left(\frac{1}{r}\frac{\partial w}{\partial \vartheta}\right) = 0$$

A parciális differenciálegyenlet-rendszer megoldása új analitikus eljárással I.1. Tézis

A megoldáshoz használt képzőfüggvényes eljárás előnye:

- a) A lineáris parciális differenciálegyenlet-rendszer egyetlen ismeretlen függvényt a *képzőfüggvényt* tartalmazó egyenletté alakítható.
- b) Ennek megoldása után, az eredeti egyenletrendszer ismeretlen függvényei a képzőfüggvény deriváltjaiként határozhatók meg.

Alkalmazás a forgásparaboloid-héj rezgési problémájára. Lépések:

- * Karakterisztikus differenciálegyenlet előállítása
 - A τ időváltozó leválasztása után:

$$\Theta\begin{bmatrix} w\\ F \end{bmatrix} = 0 \quad \text{diff. egyenletrendszer operátormátrixa:} \quad \Theta = \begin{bmatrix} K\Delta\Delta - \rho t\omega^2 & -\frac{1}{R}\Delta \\ \frac{1}{R}\Delta & \frac{1}{Et}\Delta\Delta \end{bmatrix}$$

Az operátormátrix determinánsa: $det(\Theta) = \frac{K}{Et} \Delta \Delta \Delta \Delta + \left(\frac{1}{R^2} - \frac{\rho \omega^2}{E}\right) \Delta \Delta$

Bevezetve a H képzőfüggvényt és alkalmazva H-ra a det(θ) operációt: $det(\Theta){H} = 0$ a karakterisztikus differenciálegyenlet.

* A karakterisztikus differenciálegyenlet megoldását keressük

a sugárirányú és a gyűrűirányú változók szétválasztásával polárkoordinátás alakban:

 $H_k(r, \vartheta) = A_k(r) \cos k \vartheta$ ahol: k a gyűrűirányú hullámszám

* A képzőfüggvényre kapott megoldás (hatvány- és Bessel függvények):

$$H_{k} = \left[C_{1k}\xi_{k}^{k} + C_{2k}\xi_{k}^{k+2} + C_{5k}J_{k}(\xi_{k}) + C_{6k}I_{k}(\xi_{k})\right]\cos k\vartheta$$

ahol:
$$\xi_k = \frac{r}{l_k}$$
 és $l_k = \left(\frac{\rho t \omega^2}{K} - \frac{Et}{KR^2}\right)^{-\frac{1}{4}}$ a lengési karakterisztikus hossz.

 $\cos k \vartheta$ a gyűrűirányú viselkedést jeleníti meg.

* A lehajlás- és a feszültségfüggvény előállítása H_k -ból az adjungált operátormátrix transzponáltjának második sorával:

$$\mathbf{Adj}(\mathbf{\Theta})' = \begin{bmatrix} \frac{1}{Et}\Delta\Delta & -\frac{1}{R}\Delta \\ \frac{1}{R}\Delta & K\Delta\Delta & -(\rho t\omega^2) \end{bmatrix}$$

$$w = \frac{1}{R} \Delta \{H_k\} = \frac{1}{R l_k^2} \Big[4C_2(k+1)\xi_k^k - C_5 J_k(\xi_k) + C_6 I_k(\xi_k) \Big] \cos k\vartheta$$
$$F = K \Big[\Delta \Delta - \frac{1}{l_\omega^4} \Big] \{H_k\} = K \Big[-\frac{1}{l_\omega^4} \Big(C_1 \xi_k^k + C_2 \xi_k^{k+2} \Big) + \Big(\frac{1}{l_k^4} - \frac{1}{l_\omega^4} \Big) \Big(C_5 J_k(\xi_k) + C_6 I_k(\xi_k) \Big) \Big] \cos k\vartheta$$

A w és F megoldásokat a peremfeltételi egyenletrendszerbe helyettesítve a determináns zérushelyei a megoldások:

 $\eta = \det\{D[\xi_k(\omega_k)]\}$

A sajátértékek azok a $\xi_k = \alpha_k = \frac{a}{l_k(\alpha_k)}$ értékek, melyek a **D** determinánst zérussá teszik.

8

A forgásparaboloid-héj frekvenciaegyenlete: I.2. tézis

det
$$(D(\alpha_k(\omega_k))) = 0$$
 ahol:
gyökök: $\ell = 1, 2, ...$
Sajátkörfrekvenciák:
 $\omega_{k\ell} = \sqrt{\frac{\alpha_{k\ell}^4 E t^2}{a^4 12(1-v^2)\rho} + \frac{E}{\rho R^2}}$
k: sugárirányú csomóvonalszám
 ℓ : gyűrűirányú csomóvonalszám

Megmutattam, hogy a héj $\ell = 0$ móduszai esetén az alacsonyabb *k*-khoz tartozó $\alpha_{k,0}$ sajátértékek és l_k lengési karakterisztikus hosszak komplexek. Akkor váltanak valósra, ha a hozzájuk tartozó sajátkörfrekvencia értéke meghaladja az

$$\omega_0 = \frac{1}{R} \sqrt{\frac{E}{\rho}}$$
 értéket. **I.3. tézis**

20

15

Jellegzetes rezgési elmozdulási alakok

paramétereik:

k: sugárirányú csomóvonalszám*l*: gyűrűirányú csomóvonalszám

1. Rezgési alak $\ell = 0$ és k = 6 paraméterre

2. Rezgési alak $\ell = 3$ és k = 0 paraméterre

Szerkezetek rezgései jellemzőinek összehasonlítása

A vizsgált forgásparaboloid-héj geometriai adatai és anyagjellemzői

Szerkezeti anyag alumínium ötvözet:

 $E = 70 \text{ kN/mm}^2$ $\gamma = 2700 \text{ kg/m}^3$ $\nu = 1/3$

A forgásparaboloid-héjból származtatott:

1. Szabadon lebegő körlemez $K\Delta\Delta w + \rho t \frac{\partial^2 w}{\partial \tau^2} = 0$ $R = \infty$

2. Rugalmasan ágyazott körlemez

 $K\Delta\Delta w + Cw + \rho t \frac{\partial^2 w}{\partial \tau^2} = 0 \quad \text{a helyettesitö}_{\text{ágyazási merevség}} C = \frac{Et}{R^2} \quad \text{for all } S \neq S \neq S$

11

Forgásparaboloid-héj $\alpha_{k\ell}$ sajátértékei

	k = 0	1	2	3	4	5	10	15
$\ell = 0$	-	-	15.97+ 15.97·i	15.97+ 15.97∙i	15.96+ 15.96∙i	15.95+ 15.95·i	15.66+ 15.66·i	14.44+ 14.44·i
1	3.01	4.53	5.93	7.26	8.54	9.78	15.67	21.35
2	6.21	7.74	9.19	10.58	11.93	13.24	19.50	25.48
10	31.40	32.96	34.49	35.99	37.48	38.95	46.06	52.89

Forgásparaboloid-héj $\omega_{k,l}$ sajátkörfrekvenciái [Hz].

	k = 0	1	2	3	4	5	10	15
$\ell = 0$	merevtes moz	stszerű gás	1.39	3.37	6.06	9.44	35.17	73.24
1	127.31	127.40	127.60	127.97	128.59	129.51	141.25	170.64
2	127.66	128.17	129.02	130.32	132.14	134.59	158.76	205.97
10	276.89	299.31	321.48	347.30	372.78	399.19	544.24	709.25

Az értekezés eredményeiből megállapítható, hogy a forgásparaboloid-héj gyűrűirányú csomóvonalat nem tartalmazó rezgéseinek sajátfrekvenciái az ágyazatlan körlemezével, míg az egy vagy több gyűrűirányú csomóvonalat tartalmazó rezgések frekvenciái a rugalmas ágyazású körlemezével közelíthetők. Hasonló következtetésre jutott Soedel (1986) és végeselemes számítással Pluzsik (2000).

Frekvenciaanalízis a nyírási alakváltozások figyelembevételével I.4. tézis

w lehajlás függvény felbontása hajlítási és nyírási összetevőre:

$$w = w_B + w_S$$
 ahol: $w_S = -\frac{K}{S}\Delta w_B$

A héj szabad rezgéseit leíró differenciálegyenlet-rendszer, kiegészítve a w_B és w_S közötti kapcsolattal:

$$\begin{bmatrix} K\Delta\Delta - \rho t \omega^2 & -\rho t \omega^2 & -\frac{1}{R}\Delta \\ \frac{1}{R}\Delta & \frac{1}{R}\Delta & \frac{1}{Et}\Delta\Delta \\ K\Delta\Delta & S\Delta & 0 \end{bmatrix} \cdot \begin{bmatrix} w_B \\ w_S \\ F \end{bmatrix} = 0$$

Megoldása: képzőfüggvényes eljárással

A nyírási alakváltozásoknak csak az igen magas frekvenciáknál van szerepe.

ahol: S a nyírási merevség.

AZ EREDMÉNYEK TÉZISSZERŰ ÖSSZEFOGLALÁSA

I. Téziscsoport: forgásparaboloid-héj dinamikai vizsgálata

- I.1. A lapos héjak elmélete alapján, új analitikus módszerrel az egyéb célra már alkalmazott képzőfüggvényes eljárással megoldottam a nyírási alakváltozásoktól mentes vékony, lapos, szabad peremű forgásparaboloid-héj ill. gömbsüveghéj rezgésének differenciálegyenlet-rendszerét. E módszer lényege, hogy a héj rezgéseit leíró parciális differenciálegyenlet-rendszert, az operátormátrix determinánsának és adjungáltjának értelmezésén alapuló képzőfüggvényes eljárás alkalmazásával, redukáltam egy közönséges nyolcadrendű differenciálegyenletre [4].
- I.2. A kidolgozott képzőfüggvényes eljárással előállított frekvenciaegyenlet alkalmas a vékony, lapos, szabadperemű forgásparaboloid-héj valamennyi saját-frekvenciájának és rezgési alakjának analitikus meghatározására [4].
- I.3. Analitikus úton és numerikusan is megmutattam, hogy a forgásparaboloid-héj gyűrűirányú csomóvonalat nem tartalmazó ($\ell = 0$) móduszai esetén az alacsonyabb k gyűrűirányú hullámszámú móduszokhoz tartozó $\alpha_{k,0}$ sajátértékek és l_k lengési karakterisztikus hosszak komplexek [3], melyek akkor váltanak valósra, ha a hozzájuk tartozó sajátkörfrekvencia értéke meghaladja az $\omega_o = c/R$ körfrekvencia értéket (ahol: c a transzverzális hullámterjedés sebessége a héj anyagában, R a forgásparaboloidhoz a tetőpontjában simuló gömb sugara).
- I.4. A képzőfüggvényes eljárással levezettem a nyírási alakváltozások figyelembevétele mellett is, a lapos szabadperemű forgásparaboloid-héj frekvenciaegyenletét.

2. Berepedt vasbetongerendák frekvenciaanalízise

Szakirodalmi háttér

A berepedt vasbetongerendák rezgéseivel foglalkozó szakirodalom fő területe a szerkezeti károsodások felderítése és identifikációja.

A károsodás vizsgálat 4 szintje, Rytter (1993)

- 1. szint: a károsodás jelenlétének megállapítása,
- 2. szint: a károsodás helyének megállapítása,
- 3. szint: a károsodás mértékének meghatározása,
- 4. szint: a szerkezet még meglévő élettartamának becslése.

A károsodások vizsgálatának főbb dinamikai lehetőségei:

- Sajátfrekvenciák megváltozásán alapuló módszerek Cowely és Adams (1979), Salawu és Williams (1993)
- *Rezgési alakok megváltozásán alapuló módszerek* Yuen (1985), Rizos (1990)
- A modális görbület megváltozásán alapuló módszerek Pandey (1991), Stubs (1992)
- A csillapítás megváltozásán alapuló módszerek Farrar és Jaureguy (1998), Salawu és Williams (1995)

Célkitűzések

A disszertáció 2. fejezetében a kéttámaszú vasbeton- és feszített vasbetongerendák rezgésének a repedezettségből származó nemlineáris jellegének vizsgálatával foglalkozom. Ennek részletei az alábbiak:

- Számítási modell kidolgozása a berepedt vasbetongerendák lineáris és nemlineáris vizsgálatára.
- A számítási modellhez számítógépi algoritmus készítése.
- Lineáris és nemlineáris vizsgálatok végzése berepedt vasbeton gerendákon.
- Magyarázat keresése a modellgerendák rezgési spektrumában jelentkező kettős csúcsra.
- A berepedt gerenda nemlineáris rezgése során a frekvencia változásának vizsgálata.
- Lineáris számítási modellek kidolgozása a látszólagos sajátfrekvenciák közelítő számítására.
- Lineáris és nemlineáris számítási modell kidolgozása berepedt feszített tartóra a görbületi inercianyomaték felhasználásával.
- A feszítőerő és a sajátfrekvencia kapcsolatának vizsgálata.

Gerendák dinamikai modellezése

Gerendák hajlítórezgéseinek differenciálegyenlete állandó keresztmetszettel csillapítás nélkül, nyírással és forgási inerciával (*Clough és Penzien*):

$$EI\frac{\partial^4 w}{\partial x^4} + m\frac{\partial^2 w}{\partial t^2} - mr^2\frac{\partial^4 w}{\partial t^2\partial x^2} - \frac{Emr^2}{kG}\frac{\partial^4 w}{\partial t^2\partial x^2} + \frac{m^2r^2}{kAG}\frac{\partial^4 w}{\partial t^4} = 0$$

Gerendák hajlítórezgéseinek differenciálegyenlete anyagi és viszkózus csillapítással, változó keresztmetszettel (*Clough és Penzien*):

$$\frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 w}{\partial x^2} + c_s I \frac{\partial^3 w}{\partial x^2 \partial t} \right) + c \frac{\partial w}{\partial t} + m \frac{\partial^2 w}{\partial t^2} = q(x, t)$$

A kidolgozott többszabadságfokú számítási modell alapfeltevései:

- a nyírási alakváltozást és a forgási tehetetlenséget elhanyagolom,
- Rayleigh-féle csillapítást használok,
- a berepedt tartományban homogenizáltam a merevséget,
- a feszültségek a rugalmas tartományon belül maradnak.

Finitizálás hosszirányban: centrális differenciák módszerével

 $[M]{\ddot{u}} + [C]{\dot{u}} + [K]{u} = F(t)$

Merevségi mátrix összeállításához:

$$M_{i} = -EI \frac{\partial^{2} w}{\partial x^{2}} \approx -\frac{EI}{h^{2}} (w_{i-1} - 2w_{i} + w_{i+1})$$
$$q_{i} = -\frac{\partial^{2} M}{\partial x^{2}} \approx -\frac{1}{h^{2}} (M_{i-1} - 2M_{i} + M_{i+1})$$

Tömegmátrix csomópontban koncentrált tömegekkel:

$$\mathbf{M} = h \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ & \ddots \end{bmatrix}$$

Csillapítási mátrix Rayleigh-féle:

[C] = a[K] + b[M]

Finitizálás az időben:

Nemlineáris vizsgálat időlépéses algoritmussal: *Wilson-módszerrel*

A nemlinearitás forrása: a repedések kvázi-periodikus nyitódása-záródása miatti merevségingadozás.

A vizsgált nemfeszített berepedt gerenda

Spektrum a mérésből (Chu, Van Nguyen)

Kettős csúcs a spektrumban:

$$f_1 = 98$$
Hz,
 $f_1^* = 89$ Hz.

19

Vizsgálatok a lineáris modellen

A csillapítást elhanyagolva a saját (kör)frekvenciák az alábbi sajátérték feladatból nyerhetők:

$$\left(\!\left[K\right]\!-\!\omega_{i}^{2}\left[M\right]\!\right)\!\!\left\{\!u_{i}\right\}\!=\!0$$

A saját frekvenciák **felső korlátját a repedésmentes gerenda** feltételezésével kapjuk:

$$f_1 = 109 \text{ Hz},$$
 $f_2 = 436 \text{Hz},$ $f_3 = 981 \text{Hz}.$

Alsó korlátot a "gyengített" gerendával, kétoldali repedések feltételezésével kapunk:

$$f_1 = 86 \text{ Hz},$$
 $f_2 = 397 \text{ Hz},$ $f_3 = 862 \text{ Hz}.$

Időlépéses számítás a nemlineáris modellen, önsúly okozta repedésmegnyílás nélkül

Ilyen feltételek mellett nem jelentkezett a kettős csúcs a spektrumban. 21

Időlépéses számítás az önsúly okozta repedésmegnyílással

• Ebben a numerikus vizsgálatban már igazolást nyert a kísérletben kimutatott mellékcsúcs. II.1. tézis

 A spektrumban talált kettős csúcs az önsúlynyomaték és a csillapítás, valamint a kezdeti impulzus megfelelő viszonya esetén alakul ki.

A nemlineáris rezgés időben változó frekvenciája

A mozgó időablakos vizsgálat szemléltetése

A sajátfrekvencia időbeli változása II.2. tézis

A mozgó időablakos vizsgálatból megállapítható, hogy a sajátfrekvencia:

- A rezgés kezdetén: a repedések periodikus jellegű záródása miatt a csak tehetetlen tömeggel rendelkező gerenda sajátfrekvenciájához áll közelebb.
- Az amplitúdó csökkenésével: a gyengített gerenda sajátfrekvenciájához tart.

A kísérletekből, valamint a lineáris és nemlineáris számításokból kapott frekvenciák összehasonlítása

Kísérlet és számítási módszerek	f_l [Hz]	<i>f</i> ₂ [Hz]
Kísérlet	89, 98	
Lineáris vizsgálat, repedésmentes gerenda	109	436
Lineáris vizsgálat, gyengített gerenda	86	397
Nemlineáris vizsgálat, önsúly nélkül	96	414
Nemlineáris vizsgálat, önsúly figyelembevételével	87, 93	
Közelítő új lineáris modellek	96.1	417.5

- A lineáris vizsgálatból a repedésmentes és gyengített gerendára kapott frekvenciák közrefogják kísérlet és a nemlineáris számítások eredményeit.
- A kísérlet eredménye összhangban van az önsúly okozta repedésmegnyílás figyelembevételével végzett nemlineáris számítással.

Berepedt feszített gerenda frekvenciaanalízise

a görbületi inercianyomaték alapján

A tartó valamely keresztmetszetében a g görbület:

$$g = \frac{\varepsilon_b}{x} = \frac{\sigma_b}{E_b x} = \frac{M}{E_b I}$$

ahol: M a súlyponti tengelyre vonatkozó nyomaték a külső teherből és a P_f feszítőerőből.

$$M = M_k - M_f = P_f k - P_f (k - e) = P_f e$$

A görbületi inercianyomaték: $I = I_g = S_d e$ (Dulácska)

ahol: S_d a keresztmetszet dolgozó részének statikai nyomatéka a semleges tengelyre. 27

A numerikusan vizsgált berepedt feszített gerenda

- a) lineáris számítás repedésmentes tartón a statikus teher, mint együttmozgó tömeg figyelembevételével,
- b) lineáris számítás a berepedt tartón a statikus nyomatékból számított, időben állandó hajlítómerevséggel,
- c) nemlineáris számítás a berepedt tartón a statikus és dinamikus nyomatékból együttesen, időben változó hajlítómerevséggel.

Görbületi inercianyomaték függése a nyomatéktól és a keresztmetszet hossz-koordinátájától

- 1. A Nyomaték-görbület kapcsolat folytonos függvény.
- 2. Nagyméretű tartó statikus lehajlásához képest kis kitérések esetén kicsi a görbületi inercianyomaték megváltozása.

Ezért: a berepedt tartó nemlineáris rezgésénekII.5. tézisfrekvenciája jól közelíthető lineáris számítás segítségével.29

AZ EREDMÉNYEK TÉZISSZERŰ ÖSSZEFOGLALÁSA

II. Téziscsoport: berepedt vasbeton és feszített-betongerendák frekvenciaanalízise

- II.1. Szimmetrikusan berepedt vasbetongerendák rezgéseinek numerikus szimulációjával (időlépéses algoritmus és Fourier-transzformáció) megmutattam, hogy a repedések periodikus jellegű záródásának következménye a spektrumban megjelenő kettős csúcs az első sajátfrekvencia helyénél az önsúly, a csillapítás és az indító impulzus megfelelő viszonya esetén.
- II.2. Mozgó ablakfüggvényes Fourier-transzformációval megmutattam, hogy amennyiben kettős csúcs van az első sajátfrekvencia helyénél a berepedt vasbetongerenda rezgési spektrumában, akkor a gerenda rugalmas rezgéseinek látszólagos sajátfrekvenciája időben csökken.
- II.3. Numerikus szimulációval megmutattam, hogy berepedt vasbetongerenda periodikus jellegű repedészáródása esetén a rezgés látszólagos sajátfrekvenciája függ az indító impulzustól.
- II.4. A mezőközépre szimmetrikusan berepedt vasbetongerendáknál új lineáris modell bevezetésével egyszerű képletet adtam, a repedések periodikus jellegű záródása miatti nemlineáris rezgés első látszólagos sajátfrekvenciájának felső korlátjára. Modellt dolgoztam ki a második látszólagos sajátfrekvencia egymáshoz közeli alsó és felső korlátjának meghatározására is [1].
- II.5. Felhasználva a feszített vasbetongerendák görbületi inercianyomatékának kifejezését megmutattam, hogy a berepedt feszített tartók rezgésekor, a repedések periodikus jellegű záródása alatt, a hajlítómerevség csak kisebb mértékben ingadozik, mint a nemfeszített gerendák esetén. A nemlineáris rezgés emiatt megbízhatóan közelíthető egy helyettesítő lineáris vizsgálattal, a statikus nyomatékokból a berepedt tartón meghatározható merevségi paraméterek felhasználásával, ha a rezgés amplitúdói kicsik a statikus lehajláshoz képest. Egy modell segítségével megadtam a sajátfrekvenciáknak a feszítőerőtől való függését [2].

Köszönetnyilvánítás:

Befejezésképpen szeretnék köszönetet mondani *Dr. Hegedűs István* egyetemi tanárnak, valamint *Dr. Kálló Miklós* tudományos munkatársnak értékes segítségükért. Köszönetemet fejezem ki továbbá *Dr. Hugo Bachmann*-nak a Zürichi ETH professzorának, aki lehetőséget adott az ETH-n poszt-graduális képzésben való részvételhez a tartószerkezetek dinamikája területén. Köszönetet mondok továbbá a tanszéki kollégáknak és családomnak is.

> KÖSZÖNÖM A FIGYELMET!