

Universität Stuttgart

Budapest University of Technology and Economics Department of Structural Engineering

Institute of Structural Design

Model development for determination of the patch loading resistance of hybrid girders with corrugated webs

Balázs Kövesdi

Introduction

- 1, Structural layout of hybrid-bridges with corrugated web and its numerous advantages.
- 2, Aim of the research work
- 3, State of the previous investigations
- 4, Numerical models model development applied finite elements support and load conditions applied imperfections model verification model simplification method
- 5, Numerical investigations

Hybrid bridges

Corrugated steel plate is a widely used structural element. In the last 20 years it has spread in the field of bridges.

Advantages of hybrid-bridges

- 1, Due to steel webs \rightarrow smaller selfweight h
- - lower structural depth
 - → increased span
 - → slenderness can be increased
 - prestressing force stays in the flanges
- 2, Due to web corrugation \longrightarrow increased buckling resistance number of stiffeners and
 - diaphragms can be reduced.
- 3, Due to concrete flanges \longrightarrow higher stiffness

Aim of the research work

No design formula for patch loading resistance

State of the previous investigations

1, No investigations available on patch loading of hybrid bridges.

2, Experiments are only on steel girders with corrugated webs.

3, Focus of previous investigations \rightarrow frame structures

Experimental investigations:

17 tests:	6 by Aravena und Edlund (1987), 6 by Kähönen (1988), 5 by Elgesby und Seebedri (1007)
Numerical investigations:	Elgaaly and Seshadri (1997).
	Luo and Edlund (1996)

Differences between experiments and hybrid bridges

- 1. Loading length ---- Executed tests: short loading length
 - → Hybrid bridges: long loading length

Hybrid bridges: no interaction

Numerical model development - 1.

Numerical model development - 2.

Applied finite elements

Shell 181

- plated element with four nodes
- bending and membrane capabilities
- in-plane and normal loads are permitted
- six degrees of freedom at each node
- stress stiffening and large deflection capabilities
- optimal for nonlinear analyses

- linear beam element with two nodes
- six or seven degrees of freedom at each node
- based on Timoshenko's beam theory
- shear deformation effects are included
- optimal for large deflection analyses

Numerical model development – 3.

Load model

uniformly distributed node loads along the whole flange width

Support conditions

- single span
- simply supported
- statically determined girders

Numerical model development – 4.

Numerical model development - 5.

Local imperfection type 2.

First local eigenmode

- EC3 permits to use eigenmodes
- any global eigenmode in the first 100
- typical local imperfection shape

Model verification

Modelling of the flange

Numerical parametric study

Numerical parametric study is executed in order to analyse the patch loading resistance in the parameter range used in bridges.

Analysed parameter range:

- 1, corrugation angle: $\alpha = 15^{\circ}-65^{\circ}$
- 2, web slenderness ratio: $h_w/t_w = 500;400;300;200$
- 3, fold slenderness ratio: $a_1/t_w = 7-117$;
- 4, loading length:

 $a_1/t_w = 7-117;$ $a_1 = 50 \text{ mm} - 350 \text{ mm}$ $ss/h_w = 0,4; 0,6; 0,7$ ss = 600 mm; 900 mm; 1200 mm

Results - 1.

1, Failure modes are different depending on the web and fold slenderness ratios.

2, Increasing loading length increases the patch loading resistance.

3, Increasing web thickness increases the patch loading resistance.

Results - 2.

4, Increasing corrugation angle increases the patch loading resistance.

Reduction of the calculation time Flange behavior like a beam modelling of the flange with beam elements Geometry of the numerical model Typical failure mode 9273 .978546 1.957 2.936 9273 1.468 2.446 3.425 3.914 - two models lead - to the same failure modes - to the same load carrying capacity calculation time reduced by 60%

Summary

- 1, Patch loading resistance of girders with corrugated webs was analysed.
- 2, Numerical model was developed.
- 3, Steps of the modelling and the properties of the numerical model was presented.
- 4, Numerical parametric study was conducted to analyse the structural behaviour.

Thank you for your attention!