

Budapest University of Technology and Economics Department of Structural Engineering

Universität Stuttgart Institute of Structural Design

Enhanced design method for the patch loading resistance of girders with corrugated webs

Balázs Kövesdi Dipl. -Ing. Benjamin Braun Prof. Dr. Ulrike Kuhlmann Prof. Dr. László Dunai

Introduction

- 1, Structural layout of hybrid-bridges with corrugated web and its numerous advantages.
- 2, Aim of the research work
- 3, State of the previous investigations
- 4, Developed numerical models and numerical investigations
- 5, Modified design method based on previous investigations and current numerical results

Hybrid bridges

Corrugated steel plate is a widely used structural element. In the last 20 years it has spread in the field of bridges.

Advantages of hybrid-bridges

Due to steel webs \rightarrow smaller selfweight 1,

- - lower structural depth
 - → increased span
 - → slenderness can be increased
 - prestressing force stays in the flanges
- 2, Due to web corrugation \longrightarrow increased buckling resistance number of stiffeners and
 - diaphragms can be reduced.
- 3, Due to concrete flanges \longrightarrow higher stiffness

Aim of the research work

State of the previous investigations

1, No investigations on patch loading of hybrid bridges.

2, Experiments are only on steel girders with corrugated webs.

3, Focus of previous investigations \rightarrow frame structures

Experimental investigations:

Ν

17 tests:	6 by Aravena und Edlund (1987),
	6 by Kähönen (1988),
	5 by Elgaaly und Seshadri (1997).
umerical investigations:	Elgaaly and Seshadri (1997)
	Luo and Edlund (1996)

Numerical model development

Modell verification

Numerical parametric study

Numerical parametric study is executed in order to analyse the patch loading resistance in the parameter range used in bridges.

Analysed parameter range:

- 1, corrugation angle: $\alpha = 15^{\circ}-65^{\circ}$
- 2, web slenderness ratio: $h_w/t_w = 500;400;300;200$
- 3, fold slenderness ratio: $a_1/t_w = 7-117$;
- 4, loading length:

 $h_w/t_w = 500;400;300;200$ $a_1/t_w = 7-117;$ $a_1 = 50 \text{ mm} - 350 \text{ mm}$ $ss/h_w = 0,4; 0,6; 0,7$ ss = 600 mm; 900 mm; 1200 mm

Results - 1.

1, Failure modes are different depending on the web and fold slenderness ratios.

2, Increasing loading length increases the patch loading resistance.

3, Increasing web thickness increases the patch loading resistance.

Results - 2.

4, Increasing corrugation angle increases the patch loading resistance.

Design method - 1.

Different design proposals are compared to the numerical calculations.

Best design proposal for long loading length

 $R_d = (R_{d1} + R_{d2} + R_{d3}) \cdot k_0 \cdot \frac{k_r}{\gamma_M}$

Proposal of Kähönen if the failure mode is local buckling

Problems:

- 1, Global buckling is missing \longrightarrow Excluded by geometric parameters.
- 2, Corrugation angle influence \longrightarrow Design method is extended.
- 3, Formula does not follow the EUROCODE _____ Transformed to the EC3 stability analysis.

New buckling curve is derived.

Design method - 2.

1, Failure mode is depending on the global and local slenderness ratios.

The global buckling can be excluded with geometrical parameter ranges.

Limit function for the minimum fold length:
$$a_i \ge \left(\frac{h_w}{t_w} + 260\right) \cdot \frac{t_w}{11.5} \longrightarrow$$
 Failure mode: Local buckling

2, Design method is based on the four plastic hinge mechanism (according to Rockey and Roberts)

Design method - 3.

Resistance of the web

$$R_{w} = f_{yw} \cdot t_{wep} \cdot s_{s} \cdot k_{w}$$
$$t_{wep} = \rho t_{w}$$

Resistance of the flange

$$R_{fl} = \sqrt{4 \cdot M_{plf} \cdot \rho \cdot t_w \cdot f_{yw}}$$

$$M_{plf} = \frac{b_f \cdot t_f^2}{4} \cdot f_{yf}$$

Design method - 4.

3, Corrugation angle has a significant influence on the patch loading resistance, but the previous design methods did not consist it.

Only Luo and Edlund developed an empirical design ____ Curve Nr. 1. formula for the corrugation angle influence

Summary

- 1, Patch loading resistance of girders with corrugated webs was analysed.
- 2, Numerical model was developed.
- 3, Numerical parametric study was conducted to analyse the structural behaviour.
- 4, Modified desing method for patch loading resistance was developed.

Thank you for your attention!