F – V interaction of girders with trapezoidally corrugated webs

Balázs Kövesdi PhD Student Supervisors:

Prof. Dr.-Ing. László Dunai Prof. Dr.-Ing. Ulrike Kuhlmann

Introduction

- Previous research activities
 - Investigation of the patch loading resistance
 - Development of FE based design method
 - Development of analytical design method
- Problem statement and research aims (F-V interaction)
- Literature overview
- Numerical modelling and structural behaviour
- Development of an F-V interaction curve
- Summary of the research work and possible further subjects

Previous research activities

Research aim

1. Design method of Kähönen

$$R_{d} = (R_{d1} + R_{d2} + R_{d3}) \cdot k_{o} \cdot \frac{k_{r}}{\gamma_{M}}$$

$$R_{d1} = k_{w} \cdot \sigma_{yw} \cdot t_{wep} \cdot a$$

$$R_{d2} = 2 \cdot t_{f} \cdot \sqrt{k_{w} \cdot \sigma_{yw} \cdot k_{f} \cdot \sigma_{yf} \cdot t_{wep} \cdot b_{f}}$$

$$R_{d3} = -0.07 \cdot \sigma_{f} \cdot b_{f} \cdot t_{f}$$

- Developed for building structures.
- Does not follow the steps of the EC3 stability analysis (design methods with reduction factors).
- Possible interactions are considered in the design method.
 k_o; k_w; k_r; R_{d3}

2. Enhanced design method

Based on design method of Kähönen+ numerical calculations + own experiments

 $\overline{\lambda}_{p} = \sqrt{\frac{f_{yw}}{\sigma_{cr}}} \quad \sigma_{cr} = \frac{k_{\sigma} \cdot \pi^{2}}{12 \cdot (1 - \upsilon^{2})} \cdot E \cdot \left(\frac{t_{w}}{a_{i}}\right)^{2} \qquad \qquad \text{Pure patch loading resistance without interactions.}$ $R = R_{w} + R_{f} = \rho \cdot ss \cdot t_{w} \cdot f_{yw} \cdot k_{\alpha} + 2 \cdot \sqrt{4 \cdot M_{plf}} \cdot \rho \cdot t_{w} \cdot f_{yw}$ Research aim: Development of interaction equations. $(F+V); \quad F+M)$

Problem statement

In the practice during launching of a bridge structure large shear (V) and transverse force (F) can be introduced at the same cross section .

Interaction should be considered in the design.

- 1. There are no recommendations in the EN1993-1-5 for the F-V interaction (neither for flat web nor for corrugated web girders).
- 2. In the literature only a limited numer of investigations are available dealing with this topic, especially for corrugated web girders.

Research strategy

- Literature overview and experimental background
- Numerical model development
- Analysis of the structural behaviour
- Numerical parametric study
- Developement of the F-V interaction curve

Literature overview

Basis of the separation is that the shear stresses due to "pure transverse force" are already included in the patch loading resistance model and a reduction of the load carrying capacity is caused only by the additional shear stresses coming from "pure shear force".

Numerical modelling

Numerical modelling

- 1. Reduced model.
 - 2. By defining the parameter x, many shear force distributions can be analysed.

Structural behaviour

Analysis of the interaction

Analysis of the interaction

Evaluation of the numerical calculations (without the separation methodology)

Effect of the web ratio: h_w/t_w

Effect of the corrugation angle:

Effect of the loading length: ss/h_w

Interaction of shear and transverse forces

Interaction of shear and transverse forces

Summary

- 1. Literature overview
- 2. Numerical model development
- 3. Analysis of the structural behaviour
- 4. Numerical parametric study
- 5. Parameters which have influence on the structural behaviour
- 6. Development of interaction curve

Further research subject

Interaction of bending and patch loading (F+M).

Thank you for your attention!