

EXPERIMENTAL AND NUMERICAL ANALYSIS OF COLD-FORMED Z-PURLINS

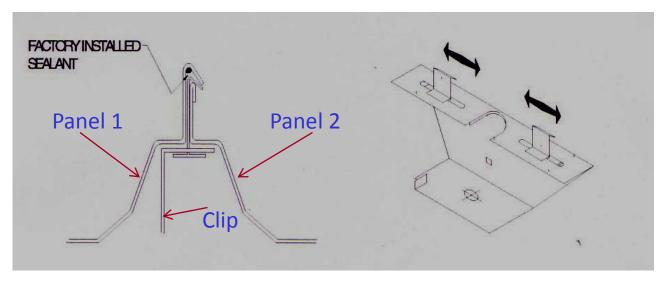
SLIDING CLIP PURLIN/SHEETING CONNECTION

Budapest 2010.02.19

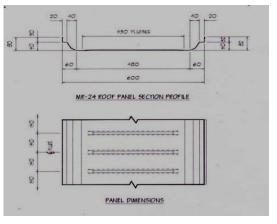
MANSOUR KACHICHIAN Supervisor: DR. LÁSZLÓ DUNAI

Contents of PhD dissertation

- 1. Experimental study of purlin/sheeting interaction
- 2. Effect of sliding clips on purlin/sheeting interaction
- 3. Full scale load test of purlin/sheeting system
- Ultimate load test on sheeting
- 5. Numerical analysis of purlin/sheeting connections


Introduction

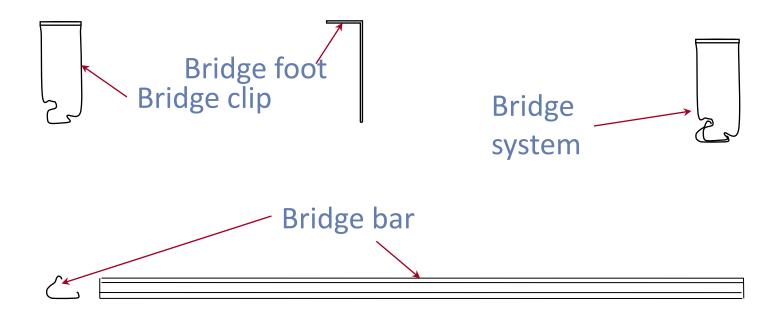
- 1. Structural arrangement and problem statement
- 2. Purpose of the research
- 3. Research strategy
- 4. Experimental program
- 5. Experimental results
- Evaluation of results
- 7. Conclusions



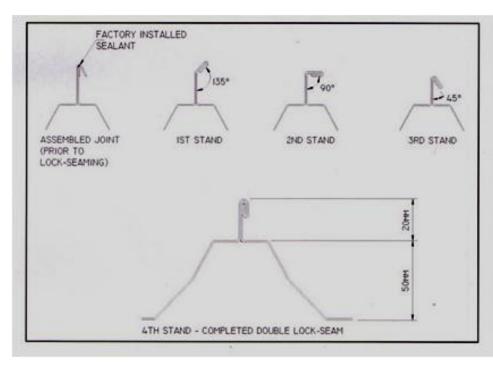
Components

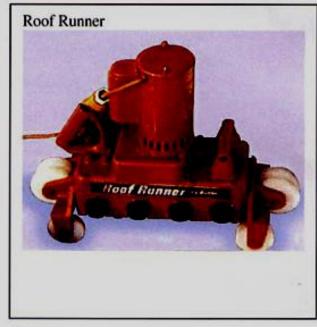
 sliding clip and connection

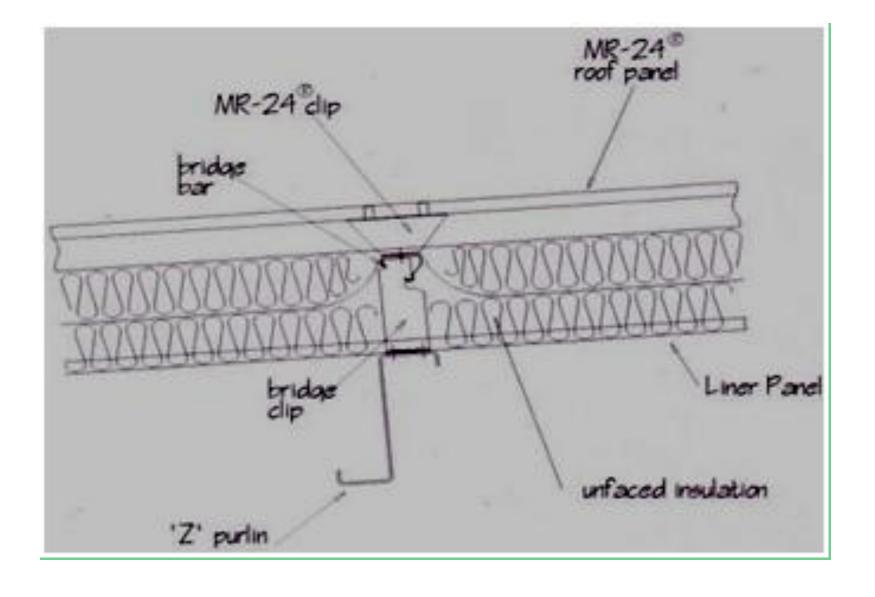
- panel geometry
- material aluminum



Z-purlin




Bridge system



Folding phases of connection

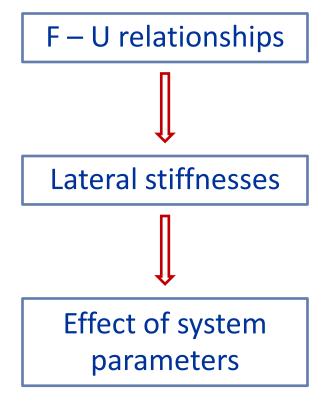
Problem statement and aims

thermal expansion or shrinkage ⇒ concentrated stresses at connections ⇒ sliding elements

Sliding elements and bridge system → Purlin lateral support lateral support + sliding action of elements have significant effect on the behaviour of the system.

Define the characteristics of system behaviour.

Determine the characteristics of the used elements and their effect on the lateral stiffness of the system.


Purpose of the experiments

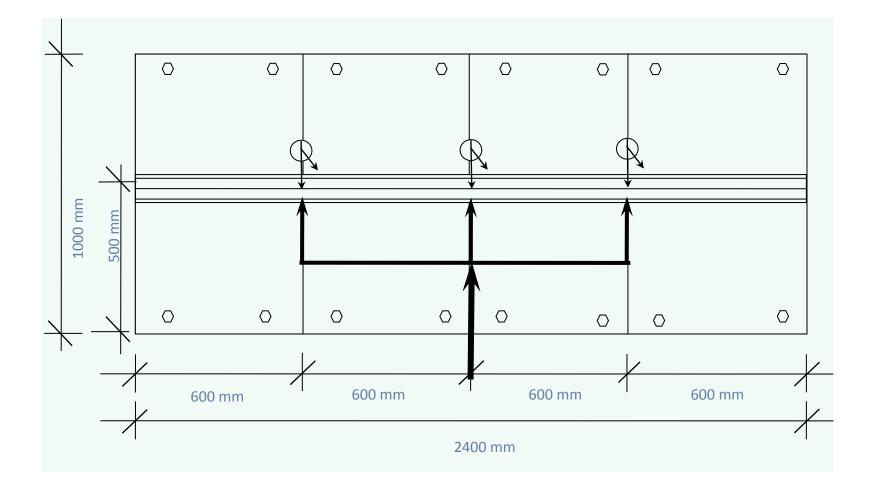
- determine the lateral stiffness of the system
- determine the effect of Z-purlin height
- determine the effect of bridge system
- determine the effect of gravity loads
- determine the effect of lateral load direction

Research strategy

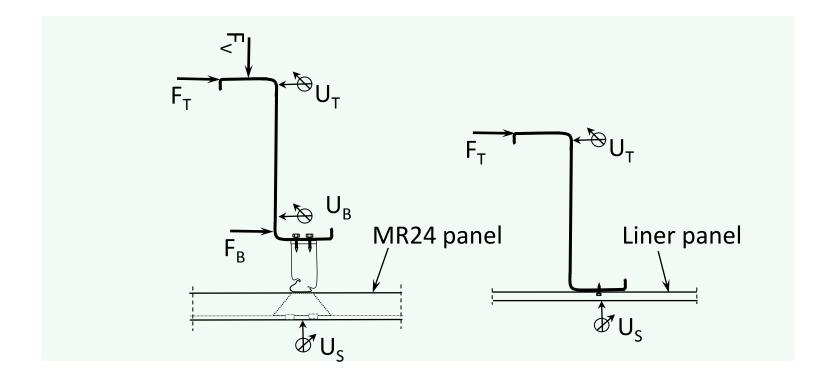
building the test specimens with the supporting, the loading, displacement and measuring systems

Experimental program

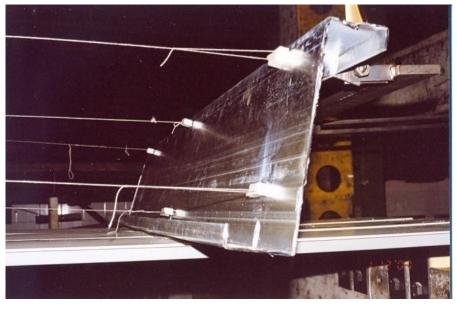
- Test specimens
- Test arrangement
- Loading and measuring system
- Test procedure



Test specimen

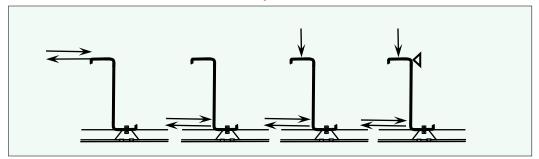


Test arrangement

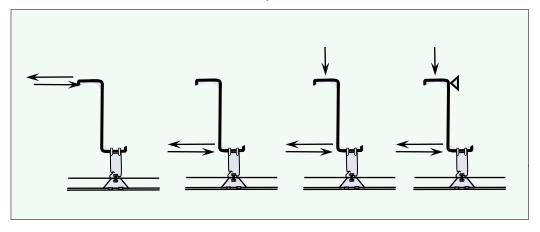


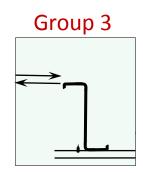
Loading and measuring systems

Loading and measuring systems


Applied loads

- Mechanically generated lateral load acting at three load points on the top of the upper flange.
- Mechanically generated lateral load acting at three load points at the lower flange level.
- Vertical load with adjustable intensity acting as distributed load at the top of the upper flange to simulate the gravity loads.




Specimen groups

Group 1

Group 2

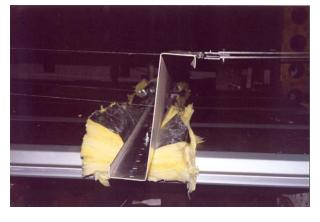
Specimen

components of specimens	specimen code	sheeting panels	sliding clip	heat insulation	bridge system	purlin t=1.5 [mm]
group 1	MR24#1B	MR24	used	used	-	Z-250
	MR24#1A	MR24	used	used	-	Z-200
group 2	MR24#2B	MR24	used	used	used	Z-250
	MR24#2A	MR24	used	used	used	Z-200
group 3	MR24#3B	liner	-	-	-	Z-250
	MR24#3A	liner	-	-	-	Z-200

components of specimens	specimen code	sheeting panels	sliding clip	heat insulation	bridge system	purlin t=1.5 [mm]
group 1	MR24#1B	MR24	used	used	-	Z-250
	MR24#1A	MR24	used	used	_	Z-200
group 2	MR24#2B	182 s	pecim	iens	used	Z-250
	MR24#2A	mi	in. 4 >	(used	Z-200
group 3	MR24#3B	liner	_	-	-	Z-250
	MR24#3A	liner	_	_	_	Z-200

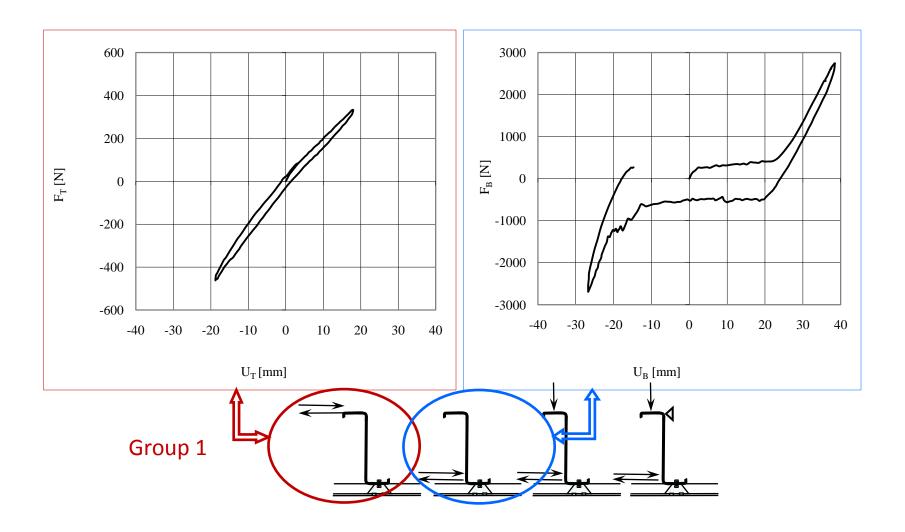
Testing procedure

lateral loads are applied mechanically.

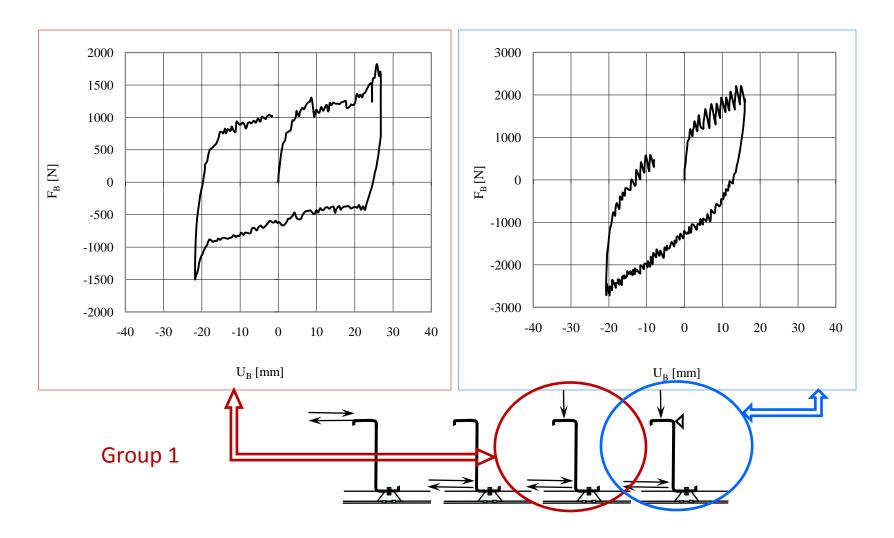

force magnitude is measured by load cell.

lateral and vertical deformations are measured by inductive transducers

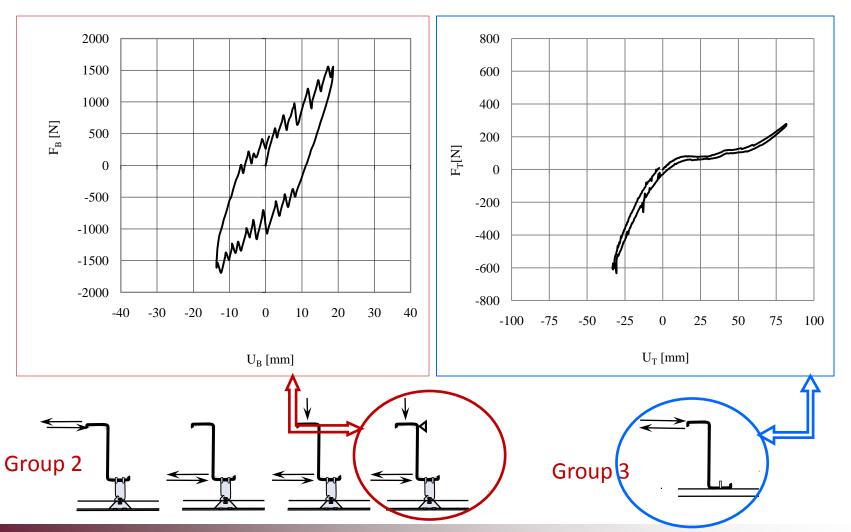
$$F_{T} \longrightarrow U_{T}$$


$$F_{B} \longrightarrow U_{B}$$

$$F_{B} + F_{V} \longrightarrow U_{B}$$



Experimental results 1



Experimental results 2

Experimental results 3

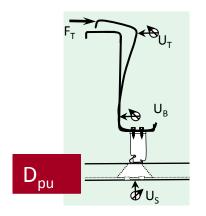
Deformation components

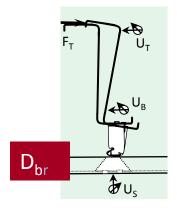
ullet D_{sh}

MR24 sheeting deformation

• D_{cl}

- clip deformation


• D_{br}

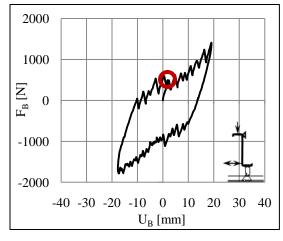

- bridge deformation

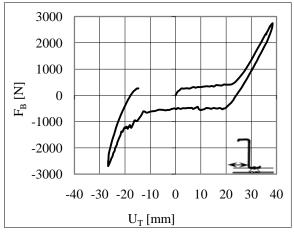
D_{pu}

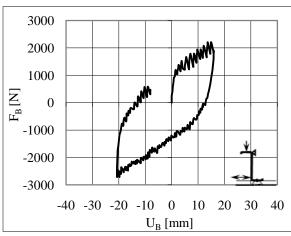
purlin deformation


In the tests the effects of D_{sh} and D_{cl} are not significant.

Deformations and sliding types


S_{in} – initial slip after the load introduction.

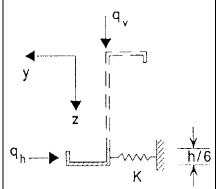

 S_{sm} – "smooth" slip after the first slip happened.

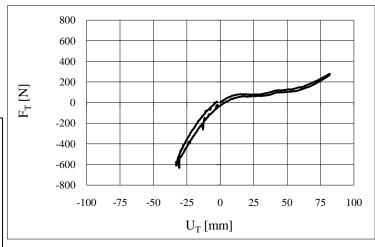

S_{cs} – "continuous" stick–slip after the first slip happened.

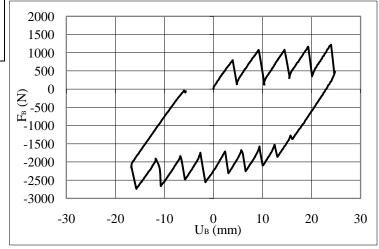
Deformations and sliding types

S_{in} – initial slip after the load introduction.

S_{sm} – "smooth" slip after the first slip happened.

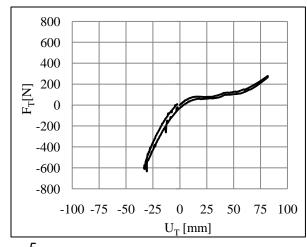

S_{cs} – "continuous" stick–slip after the first slip happened.

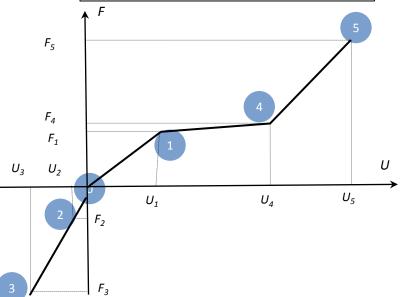

Analysis of experimental results


$$F_T - U_T \longrightarrow K$$
 $F_B - U_B \longrightarrow K$

$$\frac{1}{K} = \frac{\delta}{F}$$

due to the nature of the F–U relationships, two models are developed to calculate the lateral stiffness values


displacements without sliding

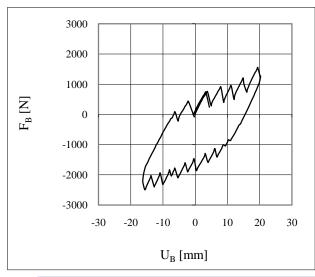

$$- K_1 = (F_1/L)/U_1$$

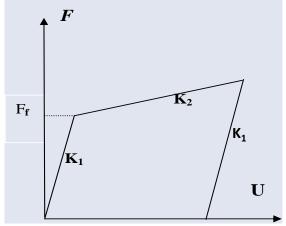
$$- K_{4} = (F_{4}/L)/U_{4}$$

$$- K_{1(-)} = (F_3 - F_2)/L)/(U_3 - U_2)$$

$$- K_3 = (F_5 - F_4)/L)/(U_5 - U_4)$$

characteristics of Model #1

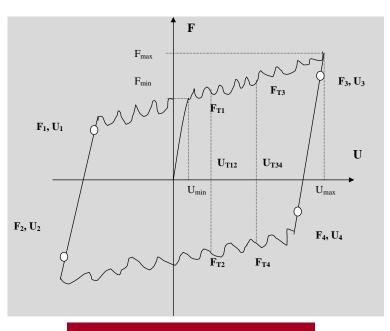

Model #1 lateral stiffness


average stiffness of the tested specimens

	specimen	purlin	<i>K</i> ₄×100 [N/mm²]	<i>K₁₍₋₎×</i> 100 [N/mm²]	<i>K₃</i> ×100 [N/mm²]
⇔ 7	MR24#1A	Z200	0.83	0.85	
	MR24#1B	Z250	0.74	0.842	
⇔ ๅ	MR24#2A	Z200	0.143	0.143	
<u> </u>	MR24#2B	Z250	0.061	0.124	
~ ~7	MR24#3A	Z200	0.352	1.478	0.389
L	MR24#3B	Z250	0.176	0.635	0.294

- K₁ average elastic lateral stiffness of the system
- K₂ friction/sliding stiffness of the system including nonlinear behaviours and sliding effects
- F_f average initialling friction/sliding load at which sliding behaviours occurs

characteristics of Model #2



Parameters of Model #2

$$K_1 = (k_{11} + k_{12} + k_{13})/3$$

 $K_{11} = (F_{min}/L)/U_{min}$
 $K_{12} = (F_3 - F_4)/L)/(U_3 - U_4)$
 $K_{13} = (F_1 - F_2)/L)/(U_1 - U_2)$

$$K_2 = (F_{\text{max}} - F_{\text{min}})/L)/(U_{\text{max}} - U_{\text{min}})$$

$$F_f = ((F_{T1} - F_{T2}) + (F_{T3} - F_{T4}))/4$$

Model # 2 parameters

initial stiffness $K_1 \times 100 \, [\text{N/mm}^2]$

upper flange condition	F _v [N]	*		<u>*</u>	<u></u>
		Z-200	Z-200	Z-250	Z-250
	0	0.164	0.009	0.1	0.005
	662	0.247	0.003	0.067	0.011
	1709	0.275	0.004	0.176	0.022
	2308	0.329	_	0.162	_
	662	0.269	0.08	0.226	0.064
	1709	0.263	0.09	0.187	0.07
	2308	0.306	0.085	0.196	0.077
	2907	0.311	0.085	0.38	0.079

friction sliding stiffness $K_2 \times 100 \text{ [N/mm}^2\text{]}$

upper flange condition	F _v [N]	<u></u>		<u>*</u>	
		Z-200	Z-200	Z-250	Z-250
	0	0.003	0.0014	0.0025	_
	662	0.01	0.0003	0.0028	0.0058
	1709	0.014	0.0013	0.0115	0.0128
	2308	0.018	_	0.0094	_
	662	0.054	0.0219	0.0353	0.0103
	1709	0.044	0.0169	0.0346	0.003
	2308	0.051	0.0145	0.0406	0.0135
	2907	0.058	0.0147	0.034	0.0073

friction sliding force $2F_f$ [N]

upper flange condition	F _v [N]	<u></u>		<u>*</u>	
		Z-200	Z-200	Z-250	Z-250
	0	1072	_	859	_
	662	1430	169	458	-
	1709	1812	-	1573	_
	2308	1978	-	1900	_
	662	2140	1314	1298	1580
	1709	2083	2121	1693	2128
	2308	2141	2524	1888	2459
	2907	2713	3011	2080	3044

Evaluation of results

- lateral load at top flange
- lateral load at bottom flange

Lateral load at top flange

• purlin height effect on specimen stiffness:

bridge system effect on specimen stiffness:
 with bridge/without bridge 10-15 %

direction of load effect on specimen stiffness:

Lateral load at bottom flange

• the effect of high bridge system is significant on the lateral stiffness $K_1 \longrightarrow 1-40 \%$

$$K_2 \longrightarrow 5-50\%$$
 $F_f \longrightarrow 60-100\%$

gravity load has significant effect as well

 purlin height and restrain of the purlin upper flange have smaller effect compared to the previous two parameters \$\impsize 30-90\%\$

Conclusions

- I designed a test procedure to test cladding systems with sliding and bridge elements; I completed tests on 182 specimens.
- I analyzed the test results on the basis of F-U relationships for specimens and determined the typical behaviour modes.
- 3. On the basis of the test results I developed two models to characterize the observed behaviour.
- 4. The models are used for stability design of purlins:
 - (i) lateral stiffness values are built in the design method of purlins.
 - (ii) the insufficient structural arrangements are determined.

Thank you