Effect of corrosion on the buckling of steel angle elements

Katalin OSZVALD, PhD student Prof. László DUNAI, supervisor

Budapest University of Technology and Economics

Department of Structural Engineering

Introduction

Corrosion: significant problem Many types of corrosion:

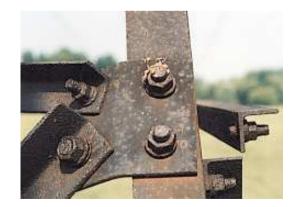
- Uniform corrosion
- Pitting corrosion
- Crevice corrosion
- Corrosion with fatigue

Steel structures are exposed to corrosion:

- Structures under soil (pipelines)
- Structures in the air
- Transmission line columns
- Bridges

fib International PhD Symposium in Civil Engineering

June 20-23, 2010, Lyngby


Transmission line columns

Pitting corrosion Crevice corrosion "Korell" steel – MVM (Hungarian Power Companies Co.) Corrosion on column base and intersection

Liberty Bridge in Budapest

Construction failure

Excavation

Corrosion → significant reduction of cross-section

fib International PhD Symposium in Civil Engineering

June 20-23, 2010, Lyngby

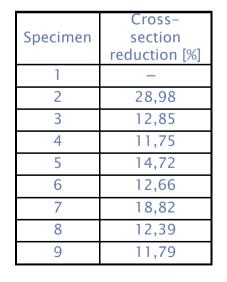
Aims of study

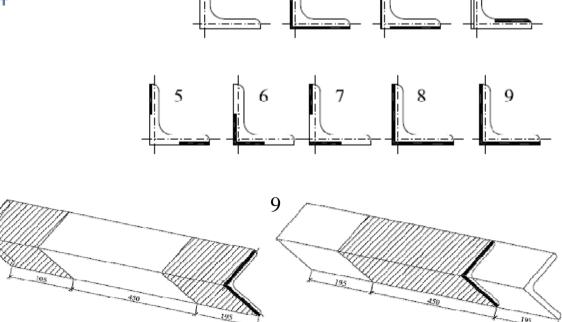
Previous studies on the effect of corrosion:

- Bended beam (Rahgozar, 2009)
- Sheared plate (Paik, Lee, 2004)
- Compressed plate (Sadovsky, Drdacky, 2001)
- Pitting corrosion (Nakai, 2004)

Analysis of corroded angle section members:

- Ultimate behaviour
- Resistance reduction
- Effect of loss of cross–section
 - location of corrosion
 - size and shape of imperfection

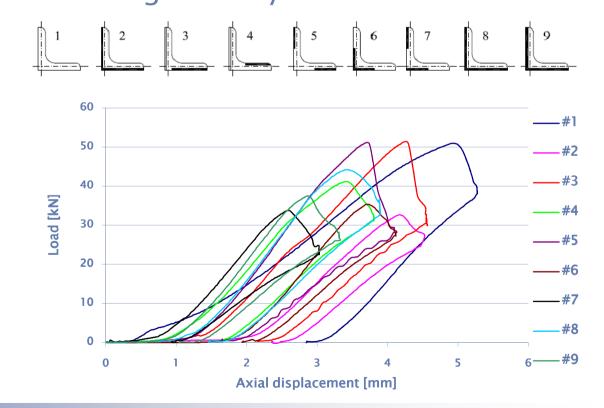

Buckling tests


Specimens

- Corrosion cross-section reduction
- Artificial reduction milling process

8

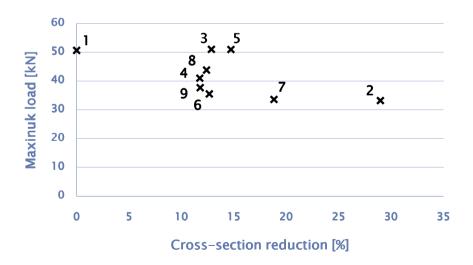
- 9 pieces of specimen
- Section: $40 \times 40 \times 4$
- Length: 840 mm



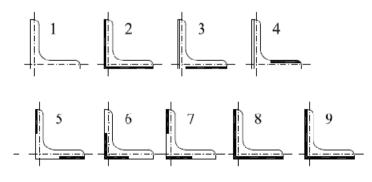
June 20-23, 2010, Lyngby

Test results

Centric compression, measure load, axial and horizontal displacements Failure mode: global buckling in every case

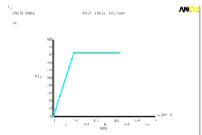


Test results

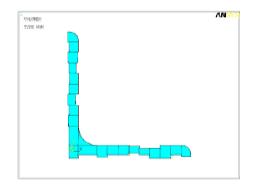

Significant differences observed in the cases of same amount of cross-section reduction

Effect of corrosion location

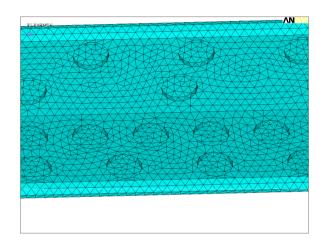
- Inside and outside reduction
- Location on the leg
- Reduction by element length

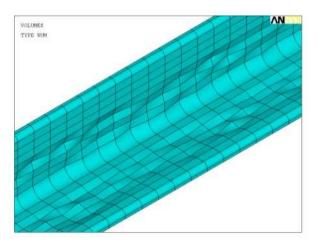

Specimen	Resistance [kN]	Difference [%]	Cross- section reduction [%]
1	50,65	_	-
2	33,20	34,45	28,98
3	51,02	-0,73	12,85
4	41,00	19,05	11,75
5	50,95	-0,59	14,72
6	35,50	29,91	12,66
7	33,60	33,66	18,82
8	43,80	13,52	12,39
9	37,70	25,56	11,79


Finite element model


Ansys program Brick finite element – large deformations and strains Material model

- Linear elastic
- Linear elastic-hardening plastic


Corrosion – thickness reduction Different geometrical shape



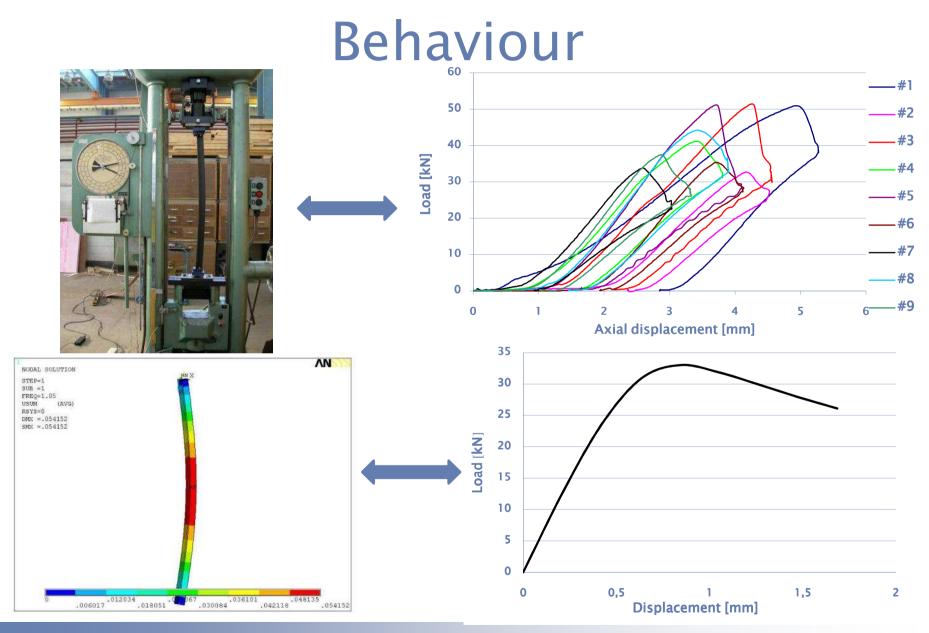
Modelling different types of corrosion

- Uniform corrosion uniform thickness reduction According to distribution cross– section reduction
 - Average
 - Betha
 - Gauss
- Pitting corrosion Option
 - Location
 - Size

Nonlinear studies

Simulation

- Design yield strength
- Linear elastic-hardening
 Determination of real plastic material model
- Equivalent geometric imperfection


Virtual experiment

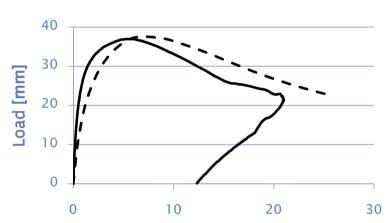
- Measured yield strength
- imperfection
- Calibrated by the test

Design resistance

Design resistance

Department of Structural Engineering

fib International PhD Symposium in Civil Engineering

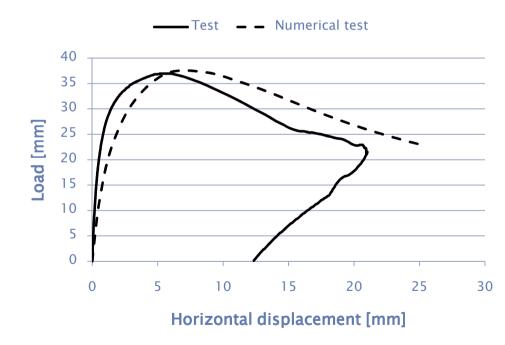

June 20–23, 2010, Lyngby

Model verification

Verification by linear and geometrically nonlinear buckling analyses — Test — Numerical test

Same behaviour Differences

- Resistance
- Stiffness


Horizontal displacement [mm]

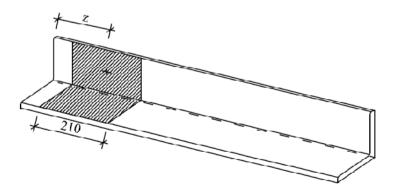
Investigation to predict the resistance

- Changing imperfection
- Application eccentricity
- Rotational spring support

Verified modell by imperfection

Equivalent geometric imperfection (Eurocode 3): L/200 Applied imperfection

Specimen	Imperfection	Resistance [kN]		Differen ce
		Virtual	Real	[%]
1	L/1500	50,71	50,65	0,1
2	L/800	32,54	33,20	2,0
3	L/1500	47,87	51,02	6,6
4	L/400	42,68	41,00	3,9
5	L/800	50,86	50,95	0,1
6	L/500	33,10	35,50	7,3
7	L/350	33,03	33,60	1,7
8	L/700	43,79	43,80	0,0
9	L/600	37,14	37,70	1,5

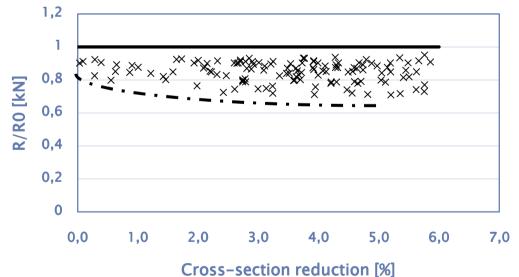

Virtual experiments

Influence of three parameters:

- Cross-section loss (refer to the whole element)
- Geometric imperfection
- Location of corrosion

Parameter values by previous analyses

Parameter	Min	Max	
Cross-section reduction	0 %	6 %	
Imperfection	L/800 (1,05 mm)	L/200 (4,2 mm)	
Location (z)	105 mm	735	

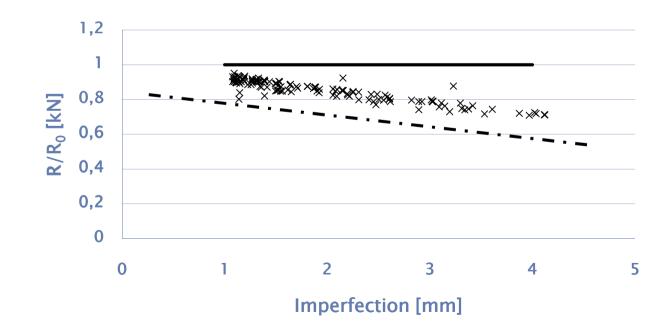

Analyses and results

Tendencies of resistance reduction

- Cross-section reduction \rightarrow nonlinear decrease
- Big standard deviation

5% cross-section reduction

- Maximal resistance
 - reduction:30%
- Average reduction: 17%

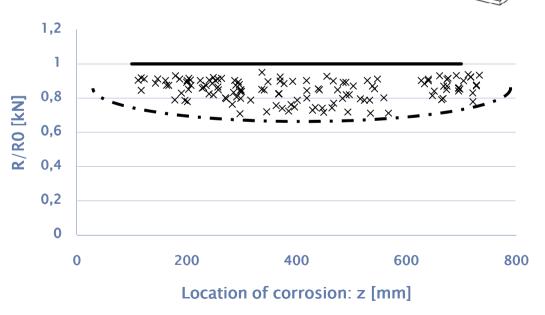


Analyses and results

Tendencies of resistance reduction

- Imperfection $\rightarrow \sim$ linear decrease
- Small standard deviation

Dominant effect


Analyses and results

Tendencies of resistance reduction

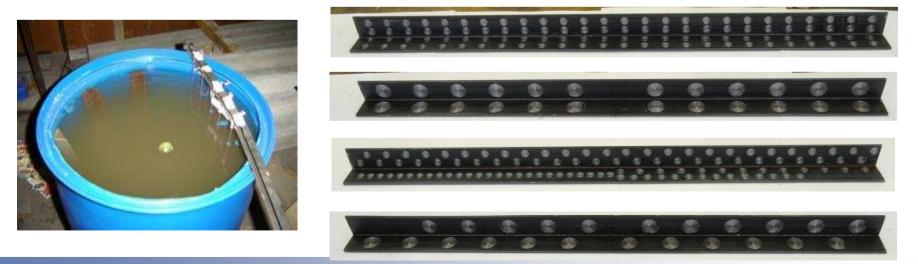
- Corrosion location→ nonlinear decrease
- Big standard deviation

Middle of the element – bigger decrease Tendecies like results of tests

Max. reduction: 30% Min. reduction: 7%

Concluding remarks

- Experiments 9 specimens
 - Corrosion cross-section reduction
 - Different location


⇒ Resistance and behaviour

- Modelling verified and calibrated by experimental results
 - Application for further analysis
- Numerical analysis effect of three parameters
 - cross-section reduction
 - imperfection
 - corrosion location
 - ⇒ Determination main tendencies

Further studies

- Speeded corrosion test
 - Alternate immersion corrosion test NaCl solution artificial generates
 - Specimens
 - Angle section (5 pieces) for compressive buckling test
 - Plate (10 pieces) for fatigue test

Analysis corroded (pitting corrosion) angle section

fib International PhD Symposium in Civil Engineering

June 20–23, 2010, Lyngby

Thank you for your kind attention!