Experimental investigation of individual embossed mechanical bond in composite floor

Noémi Seres, László DUNAI

9th International Conference on Steel Concrete Composite and Hybrid Structures

July 8–10, 2009

Table of contents

- Subject- experimental analysis of the mechanical bond in composite floors
- Layout:
 - Introduction
 - Experimental investigation
 - Concluding remarks
 - Next step of the research

Introduction

Structural layout

- Concrete slabFrictional interlockProfile deckMechanical interlock rolled embossmentsSteel beamSteel beam
- Failure modes

(I) flexural failure (II) longitudinal shear failure (III) vertical shear failure

9th International Conference on Steel Concrete Composite and Hybrid Structures

Introduction

Performance tests

(a) Full – scale specimens (b) Small scale specimens of push – out test

- Scope
 - Simplify the experiments
 - Develop an advanced numerical model for the simulation

Numerical pre-study

- Model levels
 - 1. Concrete material model
 - 2. Composite connection model
 - 3. Composite beam model

ANSYS

Numerical pre-study

Concrete material model

- Simply supported RC beam
- ANSYS code

Appropriate concrete material model

9th International Conference on Steel Concrete Composite and Hybrid Structures

Numerical pre-study

Local model of embossed mechanical bond

9th International Conference on Steel Concrete Composite and Hybrid Structures

- Layout
 - Two plate thicknesses
 - Six specimens
 - One enlarged embossment
 - Strain gauge measurement
 - Two plates back-to-back in the concrete cube
 - Separation with spacer plate
 - Free deformation of the embossment is insured
 - Avoid global failure in concrete→ stirrups

Strain gauges

Strain gauges (a) basic and (b) supplementary

• Strain gauges

9th International Conference on Steel Concrete Composite and Hybrid Structures

Specimens

9th International Conference on Steel Concrete Composite and Hybrid Structures

Sign	Sheeting thickness [mm]	Strain gauges [pc]	Concrete cube size [cm]	Steel plate size [mm]	Embossment diameter/height [mm]	f _y /f _u * of steel [N/mm ²]	f _{ck} ** of concrete [N/mm ²]
1.1	1,5 mm	5	20x20x20	340x120	37,4/10	444/510	43,35
1.2	1,5 mm	5	20x20x20	340x120	37,4/10	444/510	43,35
1.3	1,5 mm	15	20x20x20	340x120	37,4/10	444/510	43,35
2.1	2 mm	5	20x20x20	340x120	37,4/10	459/534	43,35
2.2	2 mm	5	20x20x20	340x120	37,4/10	459/534	43,35
2.3	2 mm	15	20x20x20	340x120	37,4/10	459/534	43,35

* yield stress/ultimate stress

** compressive strength

9th International Conference on Steel Concrete Composite and Hybrid Structures

- Execution
 - Loading frame
 - Support from above
 - Centralized and uniform load transfer
 - Hard rubber pad on the supported concrete surface
 - Strain measurement
 - Relative displacement measurement

- Failure
 - First crack on the exterior side of concrete
 - Crack propagation
 - Slip of the plate
 - Two kinds of cracks

Concrete failure: (a) crack type #1 (b) crack type #2

Embossment's failure

Force – displacement

• Results

Sign	End of linear phase [kN]	1 st crack [kN]	Slip of plate [kN]	Ultimate load [kN]	1 st yielding on steel plate [kN]
1.3	16,4	21,9	28,8	31,6	4,39
2.2	20,6	29,3	40,6	42,2	5,62

Design characteristics

Plate thickness [mm]	Initial stiffness [N/mm]	Load carrying capacity [kN]	
1,5	5 722	34,33	
2,0	11 637	42,2	

Strain measurement

- same behaviour by position and by specimen type
- yielding at very low load level (5–10 kN)
- yielding at #2 gauge position

 μ m/m

9th International Conference on Steel Concrete Composite and Hybrid Structures

F

3

2

Concluding remarks

- Experimental investigation of an individual embossment
- New test specimen is introduced —> local analysis
- Basic behaviour modes are observed
- Quantitative evaluation of the results
- Validation of the developed advanced numerical model for the embossment's behaviour
- Embossments interaction

Next step of the research

Numerical modelling

[mm]

[KN

Acknowledgement

- Special thanks for the financial support:
 - OTKA T049305 project, Hungary
 - Hungarian Academy of Engineering Foundation-Rubik International Foundation

Thank you for your attention