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I. Introduction 

I.1. Problem description, goal of work 
The goal of this work is to analyse Derand’s rule of thumb regarding the width of pillars 
of cathedrals. These cathedrals and other buildings those times, were built without any 
calculation. The dimensions of these structures were based on empirical rules, which 
often were the result of earlier tries and failures. Of course the intuition of the 
masterbuilders had a great influence. These rules mostly were given in such way, that 
they gave a rough estimation regarding some dimensions. 

Derand made some rules also related to arches. One of them is related to the maximum 
height of the supporting pillar, while another gives a restriction for the minimum width 
of them. This second is represented in figure I.1..Thus in order to get the minimum 
width of the pillar one should divide the inner part of the arch into three curves with 
equivalent length. Then a line has to be drawn on one of the trisecting point and the 
bottom point nearest to it. Then this line is extended by the distance of these points. The 
homework contains the analysis of this second rule with the help of discrete element 
method. The 3DEC software of Itasca is used. 

In this project a single arch is under examination. The arch is based on an equilateral 
triangle with a span of 4.0 m. The arch thickness is 40 cm, while the supporting pillars 
have a height of 4.0 m (see figure II.1.). The longitudinal length is 1.0 m. According to 
Derand’s law, this arch must be supported by a pillar with 94 cm width at least. Two 
pillar widths were taken into account. One of them is a little above Derand’s suggestion 
– 1.0 m - , and the other is slightly below that - 90 cm -. The aim is to decide whether 
Derand’s rule of thumb is an appropriate estimation for the width of pillars. Only self-
weight was taken into account. The critical width was determined also. 

 
I.1. figure: Representation of Derand’s rule. 
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I. Solution strategy 

For the analysis a 3D discrete element model was built up for both cases – for the wide 
and one for the slim -. In the model the arch consists of polyhedrons. The coordinates 
were determined in Excel. After applying the supports, loads, material and contact 
properties it was possible to run the calculation. After the calculation come conclusions 
- based on the results (displacements, contact forces etc.) - were made. 

II. Discrete element model 

II.1. Geometry 

For the sake of simplicity and for time sparing only the half of the arch was modelled 
(figure II.1.). The arch contains 8 blocks and the pillar is built up by 8 pieces also.  

 

 

 

 

 

 

 

 

 

 

 

II.2. Material model of blocks 

The elements are deformable with linear elastic behaviour. The structure is made of 
sandstone, the material properties are set for usual values of that (E=19.3GPa, Poisson-
ratio: 0.38 , K=26.8GPa G=7GPa). The density was chosen to 2400 kg/m3. 

II.3. Material model of contacts 

The contacts are cohesionless with a friction coefficient of 0.75. Joint shear and normal 
stiffness is 1010 N/m2. 

  

II.1. figure: The geometry of the structure and the discrete element model. 
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II.4. Boundary conditions 

The bottom of the pillars is simply supported. Supports were defined with the help of 
some blocks whose velocities are zero, thus they cannot move. One supportblock is at 
the bottom of the pillar, while another is on the top, next to the peak block of the arch. 
This upper supportblock was also fixed, but the friction coefficient between the peak 
block and this supportblock was chosen for low enough – 0.02 - to model a frictionless 
contact. This kind of support was applied to take advantage of the symmetry of the 
problem. As for the calculation at first all of the blocks were fixed and then the blocks 
of the structure were gradually released, proceeding downwards. 

II.5. Loading conditions 

As it is written above only self-weight was applied. 

III. Results 

The most important results of the calculation are the displacements and contact forces. 
The unbalanced force diagram is important also, for instance for deciding whether the 
calculation converge or not. The vertical displacement of the top of the arch and the 
horizontal displacement of the top of the pillar are plotted for all of the calculations. 
Displacement figures help to understand the structural response. 

III.1. Results of the arch with pillars of 1,0 m width 

The unbalanced forces shows that the calculation converges (figure IV.1.).  

 

III.1. figure: The unbalanced forces of the arch with 1,0 m width pillar. 
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According to the displacements figures and the displacement-step diagrams, the results 
are reasonable (see figureIV.2-IV.3.). The situation of top point and point2 are 
represented below. As one can expect the top block does not move horizontally, and the 
bottom support is unmoving. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Top point 

Point2 

III.2. figure: The vertical displacement figure (above) and the figure of displacement vectors (down). 
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On grounds of these results one can make a conclusion that the pillars with 1.0 m width 
are acceptable. 

III.2. Results for the arch with pillars of 90 cm width 

See figure IV.4. for the unbalanced forces. One can see that this calculation also 
converges. See figure IV.5.-6. for displacement figure and diagrams. 

  

III.3. figure: Displacement diagrams of top point and point2. 
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III.4. figure: Unbalanced forces. 

III.5. figure: Figure of vertical displacements and displacement vectors. 
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According to these results it is obvious that the pillars with 90 cm width are also 
acceptable for this arch. This means that Derand’s rule is conservative. In order to 
analyse whether it is a rough or a quite precise approximation the critical width of the 
pillars was determined. 

  

III.6. figure: Displacement diagrams of top point and point2. 
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III.3. The critical width of the pillars 

In order to do that a parametric analysis was carried out. The parameter was the width 
of the pillars. According to this the critical width for this structure is 53 cm – with 53 
cm the structure is stable but at 52 cm the collapse occurs - . See figure IV.7-8-9. for 
diagrams of unbalanced forces and displacements. Neither the unbalanced forces nor the 
displacements of the characteristic points do converge to a value. See figure IV.10. for 
the mechanism with three hinges – top of arch, bottom of arch and bottom of the pillar -. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

III.7. figure: Unbalanced forces. 

III.8. figure: Vertical displacement versus calculation step diagarm of top point. 
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Thus the critical width is well below Derand’s suggestion. 

IV. Conclusions 

On the grounds of the results discussed above it is possible to evaluate Derand’s 
suggestion for the width of pillars. According to the discrete element simulations the 

III.10. figure: Mechanism with three hinges. That single block on the top is the supportblock. 

III.9. figure: Horizontal displacement versus calculation step diagram of point2. 
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critical width for the pillars is 53 cm which is much more below than his approximation 
– 94 cm - . Thus Derand’s rule is quite a rough one well on the safe side. 
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VI. Appendix 

VI.1. Code for 3DEC 

new 
 
;Defining the geometry with polyhedrons 
;Definig a variable for the geometry input (aa) 
 
def aa 
aa=4.9 
end 
 
;arch 
 
polyhedron prism a 4,0,0.000 4.4,0.000,0.000 4.362,0.574,0.000 3.966,0.522,0.000 b 
4,0,1 4.4,0.000,1 4.362,0.574,1 3.966,0.522,1 
polyhedron prism a 3.966,0.522,0.000 4.362,0.574,0.000 4.25,1.139,0.000 
3.864,1.035,0.000 b 3.966,0.522,1 4.362,0.574,1 4.25,1.139,1 3.864,1.035,1 
polyhedron prism a 3.864,1.035,0.000 4.25,1.139,0.000 4.065,1.684,0.000 
3.696,1.531,0.000 b 3.864,1.035,1 4.25,1.139,1 4.065,1.684,1 3.696,1.531,1 
polyhedron prism a 3.696,1.531,0.000 4.065,1.684,0.000 3.811,2.2,0.000 
3.464,2.00,0.000 b 3.696,1.531,1 4.065,1.684,1 3.811,2.2,1 3.464,2.00,1 
polyhedron prism a 3.464,2.00,0.000 3.811,2.2,0.000 3.491,2.679,0.000 
3.173,2.435,0.000 b 3.464,2.00,1 3.811,2.2,1 3.491,2.679,1 3.173,2.435,1 
polyhedron prism a 3.173,2.435,0.000 3.491,2.679,0.000 3.111,3.111,0.000 
2.828,2.828,0.000 b 3.173,2.435,1 3.491,2.679,1 3.111,3.111,1 2.828,2.828,1 
polyhedron prism a 2.828,2.828,0.000 3.111,3.111,0.000 2.679,3.491,0.000 
2.435,3.173,0.000 b 2.828,2.828,1 3.111,3.111,1 2.679,3.491,1 2.435,3.173,1 
polyhedron prism a 2.435,3.173,0.000 2.679,3.491,0.000 2,3.919,0.000 2,3.464,0.000 b 
2.435,3.173,1 2.679,3.491,1 2,3.919,1 2,3.464,1 
 
;pillar 
 
polyhedron prism a 4,0,0.000 @aa,0.000,0.000 @aa,-0.5,0.000 4,-0.5,0.000 b 4,0,1 
@aa,0.000,1 @aa,-0.5,1 4,-0.5,1 
polyhedron prism a 4,-0.5,0.000 @aa,-0.5,0.000 @aa,-1,0.000 4,-1,0.000 b 4,-0.5,1 
@aa,-0.5,1 @aa,-1,1 4,-1,1 
polyhedron prism a 4,-1,0.000 @aa,-1,0.000 @aa,-1.5,0.000 4.0,-1.5,0.000 b 4,-1,1 
@aa,-1,1 @aa,-1.5,1 4.0,-1.5,1 
polyhedron prism a 4.0,-1.5,0.000 @aa,-1.5,0.000 @aa,-2,0.000 4.0,-2,0.000 b 4.0,-
1.5,1 @aa,-1.5,1 @aa,-2,1 4.0,-2,1 
polyhedron prism a 4.0,-2,0.000 @aa,-2,0.000 @aa,-2.5,0.000 4.0,-2.5,0.000 b 4.0,-2,1 
@aa,-2,1 @aa,-2.5,1 4.0,-2.5,1 
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polyhedron prism a 4.0,-2.5,0.000 @aa,-2.5,0.000 @aa,-3,0.000 4.0,-3,0.000 b 4.0,-
2.5,1 @aa,-2.5,1 @aa,-3,1 4.0,-3,1 
polyhedron prism a 4.0,-3,0.000 @aa,-3,0.000 @aa,-3.5,0.000 4.0,-3.5,0.000 b 4.0,-3,1 
@aa,-3,1 @aa,-3.5,1 4.0,-3.5,1 
polyhedron prism a 4.0,-3.5,0.000 @aa,-3.5,0.000 @aa,-4,0.000 4.0,-4,0.000 b 4.0,-
3.5,1 @aa,-3.5,1 @aa,-4,1 4.0,-4,1 
 
;blocks for supports 
 
polyhedron prism a 2,3.464,0.000 2,3.919,0.000 1.9,3.919,0.000 1.9,3.464,0.000 b 
2,3.464,1 2,3.919,1 1.9,3.919,1 1.9,3.464,1 
polyhedron prism a 4.0,-4,0.000 @aa,-4,0.000 @aa,-4.2,0.000 4.0,-4.2,0.000 b 4.0,-4,1 
@aa,-4,1 @aa,-4.2,1 4.0,-4.2,1 
 
;ranges 
 
range name arch x=(2,5) y=(-4,4) z(0,1) 
range name supp1 x=(1.8,2) y=(0,4) z(0,1) 
range name supp2 x=(4,5) y=(-5,-4) z(0,1) 
 
;Applying supports 
fix range supp1 
fix range supp2 
 
;Mesh generation 
 
gen edge 0.4 
 
;Material properties-Sandstone(density, bulk moduli, shear moduli respectively) 
 
prop mat=1 dens=2400.0 k=2.68e10  g=7.0e9 
 
;Contact properties-friction coeff. between the top block and the top support is changed 
to ~0.2 
 
prop jmat=1 jkn 1.0e10 jks 1.0e10 jfri 36.87 
prop jmat=2 jkn 1.0e10 jks 1.0e10 jfri 1.0 
change jmat=2 range x=(1.95,2.05) y=(3,4) z=(0,1) 
 
;Setting the gravity 
 
gravity  0,-9.81,0 
 
;Storing the unbalanced foces 
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hist unbal id=1 
 
;Listing ydisp of the top of the arch and the xdisp of the top of the coloumn 
 
hist ydisp (2.435,3.173,0.0) id=2 
hist xdisp (4,0.0,0.0) id=3 
 
;Releasing the first block 
 
free range x 2.0,3.111 
 
;Starting the calculation and releasing the other blocks 
 
cycle 10000 
 
hist sforce (2,3.919,0.0) id=4 
hist sforce (4,0.0,0.0) id=5 
hist nforce (2,3.919,0.0) id=6 
hist nforce (4,0.0,0.0) id=7 
pause 
cycle 50000 
 
free range x 3.111,3.811 
cycle 50000 
 
free range x 3.811,4.4 y 0,4 
cycle 50000 
 
free range y -4,0 
cycle 50000 
 
; Plotting figures 
 
plot create plot 'Unbalanced f' 
plot hist 1 yaxis label 'Unbalanced force' 
 
plot create plot 'Vertical d' 
plot hist 2 yaxis label 'Vertical displacement of top point' 
 
plot create plot 'Horizontal d' 
plot hist 3 yaxis label 'Horizontal displacement of point 2' 
 
plot create plot 'ydisp' 
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plot contour ydisp above au 
 
plot create plot 'xdisp' 
plot contour xdisp above au 
 
plot create plot 'zdisp' 
plot contour zdisp above au 
plot block color white disp 
 
list contact state 
list contact stress 
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