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Abstract 

The problem of determining the minimum thickness of masonry arches has been a challenge 

to the engineering community through the last two centuries. Although significant work has 

been undertaken to investigate the minimum thickness of semi-circular and elliptical 

rectangular arches, no work has been done to investigate the minimum thickness of skew 

arches. In this paper we computed the minimum thickness of semi-circular skewed masonry 

arches when subjected to their self-weight. Using the Discrete Element Method (DEM), a 

sensitivity study has been carried out to investigate the minimal barrel thickness with respect 

to the: a) angle of skew; b) construction method (false, helicoidal, and logarithmic); c) size of 

masonry units; and d) frictional resistance between masonry units. The construction method 

and the angle of skew significantly influences the minimum barrel thickness of the arch. For 

skew arches constructed using the false method, as the angle of skew increases, the minimum 

barrel thickness increases. However, for skew arches constructed using the helicoidal and 

logarithmic method, as the angle of skew increases, the minimum barrel thickness decreases. 

In contrast to rectangular arches, the size of the masonry units and the joint friction angle 

significantly influences the mechanical behaviour of skewed masonry arches.  
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1. Introduction 
Masonry arch bridges constitute a significant proportion of European road and rail 

infrastructures. Most of them are well over 100 years old and support traffic loads many times 

above those originally envisaged. According to Orbán (2009), there are approximately 
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200,000 masonry arch railway bridges in Europe. This is approximately 60% of the total 

bridge stock. Almost 70% of these masonry arch bridges are 100-150 years old, while 12% of 

them are older than 150 years. In addition, a proportion of masonry arch bridges span 

obstacles at an angle (or skew) other than 90 degrees. This results in the faces of the arch not 

being perpendicular to its abutments and its plan view being a parallelogram (Figure 1). Most 

of the masonry arches have been constructed with a small amount of skew (i.e. less than 45º), 

since those with large amount of skew present significant construction difficulties (Melbourne 

and Hodgson, 1995). Different materials and methods of construction used in these bridges 

will influence their strength and stiffness. Although a great deal of work has been carried out 

to assess the strength of square or regular masonry arch bridges (Heyman 1966; Gilbert 1993; 

Page 1993; Melbourne and Hodgson 1995), comparatively little work has been undertaken to 

understand the behaviour of skew arches (Hodgson 1996; Wang 2004; Sarhosis et al. 2014). 

The analysis of skew arch bridges involves many difficulties and there is no universally 

accepted method of analysis yet. Today, in many countries, including UK, masonry skew arch 

bridges routinely assessed based on the assumption that they are rectangular in shape with an 

equivalent span of the skewed arch bridge (e.g. BD 21/01). However, experience from current 

studies (Hodgson 1996; Sarhosis et al. 2016; Sarhosis et al. 2014) demonstrated that this 

approach leads to conservative results, which is not representative of the actual strength and 

stiffness of the structure. Therefore, there is an increasing demand to understand the life 

expectancy of such bridges in order to inform maintenance, repair and strengthening 

strategies. 

 
Figure 1 – Plan view of a regular and a skew arch  

(R is the corresponding radius of the mid-surface) 

In recent years, sophisticated methods of analysis, like Finite Element Method (FEM), have 

been applied to understand the three dimensional behaviour of arches (Choo and Gong 1995). 

An overview of the different models performed in the 1990’s can be found in Boothby (2001) 

and Sarhosis et al. (2016). However, in such models, the description of the discontinuity is 

limited since they tend to focus on the continuity of the arch. Sophisticated FEM approaches 

(e.g. contact element techniques) are able to reflect the discrete nature of masonry. Examples 

of such models undertaken by Fanning and Boothby (2001), Gago et al. (2002), Ford et al. 

(2003) and Drosopoulos et al. (2006). The disadvantages of these methods are mainly 
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associated with: a) high computational cost; b) inability to predict realistically the crack 

development at serviceability limit state; and c) convergence difficulties when blocks fall or 

slide excessively. An alternative and appealing approach is that represented by the Distinct 

Element Method (DEM), where the discrete nature of the masonry arch is truly incorporated. 

The advantage of the DEM is that it considers the arch as a collection of separate voussoirs 

able to slide and rotate relative to each other. The DEM was developed by Cundall (1971) to 

model blocky-rock systems and sliding along rock mass. The approach was later used to 

model masonry structures including arches (Lemos, 1995; Lemos, 2007; Mirabella and 

Calvetti, 1998; Tóth et al., 2009; Sarhosis and Sheng, 2014; Sarhosis et al., 2015), where 

failure occurs along mortar joints. These studies demonstrated that DEM is a suitable method 

to perform analysis of low bond strength masonry where failure is mainly at masonry unit-to-

mortar interface (Giamundo et al. 2014).  

Masonry arch bridges are composed of different structural components (e.g. piers, barrel, 

backfill, spandrel walls, parapets and wing walls) which interact each other. However, in 

order to understand the behaviour of masonry arch bridges, first it is of value to study each 

component separately and then move on and study their interaction. In this paper, use is made 

of the discrete element method of analysis for the calculation of the minimum barrel thickness 

necessary for equilibrium of semi-circular masonry arches subjected to their own weight. In 

case of regular arches, the issue is settled: The purely rotational collapse mechanism that 

develops when the thickness of the arch is critically small have been investigated analytically 

and graphically by Milankovitch (1907) (see also Foce 2007) and found that forms a 

symmetric five-hinge mechanism just before collapse. However, up to now, no research work 

has been undertaken to investigate the minimum arch thickness of skew arches. Although the 

analysis of regular arches can be undertaken in two-dimensional space, the analysis of skew 

arches requires analysis in three-dimensional space. So, the three dimensional software 3DEC 

based on the Discrete Element Method (DEM) of analysis was used. Within DEM, each 

masonry unit of the arch is represented by a rigid element. Mortar joints are represented as 

zero thickness interface elements which can open and close according to the magnitude and 

direction of stresses applied to them. Also, a sensitivity study has been carried out to 

investigate the influence of the minimal barrel thickness with respect to the: a) angle of skew; 

b) construction method (e.g. false, helicoidal, and logarithmic method); c) size of masonry 

units; and d) frictional resistance between masonry units. 

2. Constructional aspects of skewed masonry arch bridges 
Masonry is strong in compression, but relatively weak in tension. Therefore, regular masonry 

arch bridges designed to be constantly under compression. To achieve this, the direction of 

forces within the arch should be normal to the coursing joints surface so that there will be no 

tendency in the successive courses to slide upon each other. The same idea also adopted for 

the construction of masonry skew arches. In the 19
th

 century, engineers, mathematicians and 

masons understood that for an arch to stand, the line of pressure should be parallel to the face 

of the arch. Hence, they positioned the voussoirs (e.g. stones, bricks) in such a way that the 

coursing joint surfaces should always be perpendicular to the face of the arch at every 

elevation. The other important factor considered for the construction of the skew arches 

related to the construction difficulties. Masons realised that construction was far easier when 

voussoirs had exactly the same size and were rectangular cuboid in shape. From the above 
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observations, over the years, three main types of construction evolved for circular arches. 

These shown in Figure 2: 

a) False skew arch: This is the simplest form of construction where units are laid 

parallel to abutments (Figure 2a)  

b) Helicoidal method (or English method): In this method, the coursing joints are 

perpendicular to the face of the arch only at the crown. The coursing joints follow 

helix spirals. The advantage of this method is that each voussoir is similar in shape 

and size to all other voussoirs. However, for geometrical reasons and for the beds to 

remain parallel, the orientation of the block units causes the beds to “roll over” and 

thus rest on the springings at an angle. Gaps between masonry units in the arch usually 

filled with mortar (Figure 2b)  

c) Logarithmic method: In this method, the coursing joints are perpendicular to the face 

of the arch at all elevations. This is the most expensive method of construction since it 

requires varying sized masonry blocks and availability of high skilled masons, since 

almost every block in the arch barrel is of unique shape (Figure 2c)  

 

 
                               (a) False skew                (b) Helicoidal            (c) Logarithmic 

 

Figure 2 – Developments and coursing joints of the different methods of construction 

(Melbourne and Hodgson, 1995) 

According to Rankine (1898) and Gay (1924), in general, masonry skewed arches constructed 

using the following three steps: 

a. Construction of formwork representing the mid-surface of the skewed arch; 

b. Determination of the equation of coursing and heading joints on the formwork. The 

position of each voussoir was marked on a sheet, which was laid down on the 

formwork.  

c. Planar coordinates of each voussoir extruded into the 3D space. 
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Figure 3 – Characteristic views for a cylindrical skew arch 
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2.1.  Calculation of the mid-surface of a skewed masonry arch   

Assume a thin, flexible and inextensible sheet that coincides with the surface of a cylinder. 

Then, this sheet can be extended on a plane without being rumpled or torn. With the help of 

the notations shown in Figure 3, the mid-surface of the skew arch is given by Equation 1: 

 

𝑌𝑓𝑎𝑐𝑒 =
𝑅

tan⁡(Ω)
∙ sin (

𝑋

𝑅
) ±

𝑏

2
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡− 𝑅

𝜋

2
≤ 𝑋 ≤ 𝑅

𝜋

2
 

 

(1) 

where 𝑌𝑓𝑎𝑐𝑒 is the vertical coordinate of the face of the arch on the developed surface, R is the 

radius of the arch, Ω is the angle of skew, b is the width of the arch, and X is the horizontal 

coordinate on the developed mid-surface. 

Also, the springing lines on the development can be written as: 

𝑋 = ±𝑅
𝜋

2
 

 

(2) 

2.2. Equations of coursing and heading joints for the different construction method 

 

2.2.1. False skew arch 

The geometrical construction of the false skew arch (Figure 4) is the simplest of the three 

methods. All of the coursing joints are parallel to the springing line. The heading joints are 

perpendicular to the coursing joints. Therefore, the nodes of the elements can be calculated on 

the cylindrical surface directly. In this method, all voussoirs have the same size and shape 

apart from the ones in the faces of the arch.  

 

 

 

 

 

 

 

 

 

Figure 4 – Plan view of skew arch constructed according to the false method 
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2.2.2. Logarithmic method 

The coursing joints of an equilibrated skew arch intersect at right angles the curve formed by 

the intersection of the soffit with any plane parallel to the faces of the arch. Let’s assume that  

Y = f(X) is the equation to a curve which intersects the curve of the arch’s face at right angle 

in the point P. 

 
Figure 5 – The perpendicularity condition for logarithmic method 

Then, at this point the two curves have an intersection point, and their tangent are 

perpendicular to each other at this point (Figure 5): 

𝑦 = 𝑌, 𝑥 = 𝑋, 𝑎𝑛𝑑⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑑𝑦

𝑑𝑥
= −

𝑑𝑋

𝑑𝑌
 

 

 

(3) 

The equation of the arch’s face is known, so the derivative of it can be calculated: 

𝑐𝑜𝑠 (
𝑥
𝑅)

tan⁡(Ω)
= −

𝑑𝑋

𝑑𝑌
 

 

 

(4) 

Integrating the above formula with respect to x: 

𝑌(𝑋) = −∫
tan(Ω)

𝑐𝑜𝑠 (
𝑋
𝑅)

𝑑𝑋 = ⁡−
𝑅

tan(Ω)
∙ ln (𝑠𝑒𝑐 (

𝑋

𝑅
) + 𝑡𝑎𝑛 (

𝑋

𝑅
)) + 𝑐1𝑖 

 

 

(5) 

The 𝑐1𝑖 constant in the equation of i
th

 coursing joint should be determined in that way that the 

distance between the adjacent coursing joints should be equal at the centreline of the arch. To 

determine these 𝑐1𝑖constants the arc length of the centreline should be calculated. The curve 

of the centreline is equivalent with the curve of the arch’s face, which is a sinusoidal curve in 

the development and it is equivalent with a semi-ellipse in the 3D-space. The procedure to 

calculate the arch length of an arbitrary curve is presented below (see Figure 6). Let’s 

assume: 
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∆𝑠 = √∆𝑥2 + ∆𝑦2 =⁡√1 + (
∆𝑦

∆x
)
2

· ∆𝑥 

 

 

 

(6) 

Let’s take the limit of ∆𝑠 as ∆𝑥 approaches zero: 

lim
∆𝑥→0

∆𝑠 = √1 + (
𝑑𝑦

dx
)
2

𝑑𝑥 

 

 

(7) 

 

Let’s integrate the above function to obtain the length of the centreline of the arch: 

∫ 𝑑𝑠 = ∫ √1 + (
𝑑𝑦

dx
)
2

𝑑𝑥

𝑅𝜋
2

−𝑅𝜋
2

𝑅𝜋
2

−𝑅𝜋
2

 

 

 

(8) 

 

In case of the arch’ face this expression leads to a complete elliptic second order integral: 

𝑠 = ∫ √1 +
1

𝑡𝑎𝑛2(Ω)
√1 −

1

𝑡𝑎𝑛2(Ω) + 1
(sin (

𝑥

𝑅
))

2

𝑑𝑥

𝑅𝜋
2

−𝑅𝜋
2

 

 

 

(9) 

Also, the arc length was split into n equal parts according to the number of courses. 

 

 

 

 

 

 

 

Figure 6 – Arc length of an arbitrary curve 

Using equation 10, xi can be determined. 

∫ √1 − (
𝑑𝑦𝑓𝑎𝑐𝑒

𝑑𝑥
)

2

𝑑𝑥 − 𝑠
𝑖

𝑛
= 0

𝑥𝑖

−𝑅𝜋
2

 

 

 

(10) 

 

Finally, the c1i constants can be obtained from: 
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𝑐1𝑖 = 𝑦𝑓𝑎𝑐𝑒(𝑥 = 𝑥𝑖) − 𝑦𝑐𝑜𝑢𝑟𝑠𝑖𝑛𝑔𝑗𝑜𝑖𝑛𝑡𝑖
(𝑥 = 𝑥𝑖) 

 

(11) 

The curves of the heading joints are parallel to the face of the arch: 

𝑌ℎ𝑒𝑎𝑑𝑖𝑛𝑔_𝑗𝑜𝑖𝑛𝑡_𝑗 = 𝑅𝑚𝑖𝑑 · tan(Ω) · sin (
𝑋

𝑅𝑚𝑖𝑑
) + 𝑐2𝑗 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−

𝑏

2
≤ 𝑐2𝑗 ≤

𝑏

2
 

 

(12) 

The 𝑐2𝑗 constants should be equally spaced between the two face of the arch depending on 

how many elements should be in one course. The coursing joints follow logarithmic curves, 

while the heading joints are parallel to the face of the arch. The intersection point of the 

heading and coursing joints is representing the vertex of the element. At this point a bisection-

method was implemented to solve these equations. (Newton-method would have convergence 

problems). Then, the coordinates were transformed back to the intradosal and extradosal 

cylindrical surface by the following transformation: 

𝑥𝑖𝑛𝑡 = R𝑖𝑛𝑡 ⁡sin (
𝑋

𝑅𝑚𝑖𝑑
) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑎𝑛𝑑⁡⁡⁡⁡⁡⁡𝑥𝑒𝑥𝑡 = R𝑒𝑥𝑡⁡sin (

𝑋

𝑅𝑚𝑖𝑑
) 

(13) 

 

𝑦𝑖𝑛𝑡 = 𝑌⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑎𝑛𝑑⁡⁡⁡⁡⁡⁡⁡𝑦𝑒𝑥𝑡 = 𝑌⁡⁡⁡⁡⁡⁡⁡ 
 

(14) 

 

𝑧𝑖𝑛𝑡 = R𝑖𝑛𝑡⁡cos (
𝑋

𝑅𝑚𝑖𝑑
) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑎𝑛𝑑⁡⁡⁡⁡⁡⁡⁡𝑧𝑒𝑥𝑡 = R𝑒𝑥𝑡⁡cos (

𝑋

𝑅𝑚𝑖𝑑
)⁡ 

 

(15) 

2.2.3. Helicoidal method 

In case of helicoidal method the coursing joints are helix spirals. These spirals appear as 

straight lines on the developed surface. This idea was described firstly by Nicholson 

(Nicholson, 1828) to describe the surface of the intrados by using the simplifications that the 

arch barrel consists of a single ring having a relatively small thickness. Later, the idea of 

Nicholson expanded by Fox (Fox, 1836), where he considered the intrados of the barrel and 

the extrados as separate surfaces mapped onto concentric cylinders by drawing a separate 

development for each surface. In this way, a third theoretical surface can be developed, which 

is an intermediate surface located at the mid-way between the intrados and the extrados. The 

mid-surface of the arch allowed the masons to align the centre of each voussoir, rather than its 

inner surface, along the desired line.  
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Figure 7 – Charles Fox’s drawing type design method to construct the developed surfaces. 

 

In order to visualize the courses of voussoirs in a stone skew arch, Fox wrote, "The principle 

which I have adopted is, to work the stones in the form of a spiral quadrilateral solid, wrapped 

round a cylinder, or, in plainer language, the principle of a square threaded screw”. Hence, the 

transverse sections of all the spiral stones are the same throughout the whole arch. It will be 

obvious, that the beds of the stones should be worked into true spiral (helicoidal) planes. So, a 

stone skew arch built to Fox's plan would have its voussoirs cut with a slight twist, in order to 

follow the shape of a square threaded screw.  

From Figure 7, on the developed extradosal and intradosal surfaces the coursing joints are not 

parallel with the coursing joints of the mid-surface. In this way, β, βext and βint can be 

computed from equations 16 and 17. 

𝛽 = arctan (
2 · 𝑅𝑚𝑖𝑑 · tan⁡(Ω)

𝑅𝑚𝑖𝑑 · 𝜋
) = arctan (

2 · tan⁡(Ω)

𝜋
) 

 

(16) 

 

𝛽𝑖𝑛𝑡 = arctan (
𝑅𝑖𝑛𝑡 ∙ tan⁡(𝛽)

𝑅𝑚𝑖𝑑
)⁡,⁡⁡⁡⁡⁡𝛽𝑒𝑥𝑡 = arctan (

𝑅𝑒𝑥𝑡 ∙ tan⁡(𝛽)

𝑅𝑚𝑖𝑑
) 

 

 

 

 

 

 

 

(17) 
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3. Overview of modelling masonry arches with 3DEC  
Within discrete element method, masonry is represented as an assembly of rigid or 

deformable blocks. 3DEC is a commercial code released by ITASCA CG. A 3DEC model 

consists a set of polyhedral bodies. Joints are viewed as the surfaces where mechanical 

interaction between blocks takes place, governed by appropriate constitutive laws. The motion 

of the blocks is simulated throughout a series of small but finite time-steps, numerically 

integrating the Newtonian equations of motion.  

3.1 Masonry units 

In 3DEC, the polyhedralblocks may be convex, or concave blocks can be created by joining 

single convex blocks. They may even contain holes. The masonry units can be represented as 

perfectly rigid or deformable blocks. In the present study, masonry units assumed as rigid 

bodies with six degrees of freedom (three translational and three rotational). 

3.2 Representation of contacts 

To check all possible pairs of elements for contact, the search time increases quadratically 

with the number of the blocks. To avoid it, in 3DEC before a pair of blocks can be checked 

for contact using exact geometrical calculations by the computer program, candidate pairs are 

identified first (Cundall, 1988).  

In this first step an envelope space is assigned to every block as the smallest three-

dimensional box with sides parallel to the coordinate axes that can contain the block. Those 

pairs of blocks are then tested for contact in detail whose envelope spaces intersect. 

After two blocks have been recognized as neighbours, then they are tested for contact. 

Contact created when a point of a block gets into the interior of another block. The contact 

detection algorithm recognizes these situations, and also provides a unit normal vector, which 

defines the plane along which sliding can occur. This unit normal should change direction 

continuously as the two blocks move relative to each other.  

Similar to other DEM codes with polyhedral elements, 3DEC applies a scheme based on a 

“common plane between the two blocks”. The contact detection analysis consists of the 

following two parts: 

- Determine a “common-plane” that, roughly saying, bisects the space between the 

two blocks;  

- Test both blocks separately for contact with the common-plane. 

The common plane is defined as the resulting plane provided by the optimization problem 

“Maximize the gap between the common plane and the closest vertex” or, equivalently, 

“Minimize the overlap between the common-plane and the vertex with the greatest overlap”. 

The algorithm applies a gradual translation and rotation of the common plane in order to 

maximize the gap (or minimize the overlap).  

Contact exists if the overlap is positive, or equivalently, if the gap is negative between the two 

blocks. The normal vector of the common plane is the contact normal. When a face of a rigid 

block is in contact with the common plane, then it is automatically discretized into sub-

contacts by triangulating the face. The vortices of the triangles will be the nodes whose 

translation increments during the actual time-step serve as the basis for the calculation of the 

forces transmitted between the two contacting blocks. 
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The area “owned” by each sub-contact is, in general, equal to one-third of the area of the 

surrounding triangles around the node. This calculation is adjusted when the sub-contact is 

close to one or more edges on the opposing block. If the other side of the interface is also a 

face, then identical conditions apply: sub-contacts are created, and relative displacements, and 

hence forces, are calculated. Details of special cases like e.g. edge-to-edge contacts are not 

presented here for simplicity. 

The basis of the mechanical calculations is the relative velocity of the sub-contact under 

question. This is defined as the velocity of the analysed node minus the velocity of the 

corresponding point of the opposite face on the other block. This latter velocity can be 

calculated with the help of a linear interpolation of the three nodes on the surface of the other 

block surrounding that opposite point. Then the relative translation vector belonging to the 

sub-contact is calculated from the relative velocity and from the length of the time step. This 

relative translation is multiplied with the actual normal and shear stiffness of the contact, in 

order to receive the uniform distributed normal and shear forces belonging to the sub-contact. 

The resultant along the sub-contact area is assigned to the analysed node; and the opposite of 

the resultant is shared among the three nodes surrounding the coincident point on the opposite 

face. The same is done for all nodes on the analysed face of the first block. Then the other 

block is analysed in a similar manner: Nodes along its contacting face are considered, and 

another set of sub-contacts is produced where the sub-contact forces are calculated from the 

corresponding relative displacements.  

Consequently, when two blocks come together, the contact logic described above is 

equivalent to two sets of sub-contacts in parallel, each carrying sub-contact forces. The sub-

contact forces received in the two steps are summed and halved then, in order to receive the 

overall interface behaviour as the average of that of both sets. 

3.3 Constitutive models for contacts 

The mechanical behaviour of contacts in 3DEC is modelled with the help of contact stiffness 

defined in the normal and shear directions, relating sub-contact stresses with relative 

displacements characterizing the sub-contact.  

According to e.g. Lemos (2007) the normal stiffness in 3DEC can have different physical 

interpretations even in those cases when the blocks are deformable. In the case of mortared 

joints, the normal stiffness can be directly related to mortar thickness and its physical 

properties. For dry joints, rough and irregular contact surfaces have a finite stiffness against 

penetration, which is reflected by the contact normal stiffness. In the shear direction, shear 

stiffness plays a similar role and Coulomb friction sets a limit to the sub-contact shear stress 

magnitude. In case of perfectly rigid blocks in the 3DEC model, on the other hand, the contact 

stiffness data have to represent the block deformability as well; Simon and Bagi (2016) 

provide a short analysis how to relate the contact stiffness parameters to the mechanical data 

of the contacting voussoirs.  

Though finite tensile strength and a joint dilatation angle could also be included in 3DEC. In 

the elastic range (when contact sliding and separation does not occur) the behaviour is 

governed by the joint normal and shear stiffness (kn and ks): 

∆𝐹𝑛 = −𝑘𝑛 · ∆𝑈
𝑛 · 𝐴𝑐 (18) 

∆𝐹𝑠 = −𝑘𝑠 · ∆𝑈
𝑠 · 𝐴𝑐, (19) 



    13 

where ∆𝐹𝑛, ∆𝐹𝑠is the normal and the shear force increment (resultant for the sub-

contact);⁡𝑘𝑛, 𝑘𝑠 are the joint normal and the joint shear stiffness;⁡∆𝑈𝑛, ∆𝑈𝑠 are the normal 

and the shear displacement increments belonging to the sub-contact; and⁡⁡𝐴𝑐 is the sub-

contact area. 

The maximum shear force allowed is given by: 

𝐹𝑚𝑎𝑥
𝑠 = 𝐹𝑛 · tan⁡(𝜑), (20) 

where⁡𝜑 the angle of friction. 

3.4 Equations of motion for rigid blocks 

The equations of translational motion for a single block can be expressed as 

𝑥̈𝑖 + 𝛼𝑥̇𝑖 =
𝐹𝑖

𝑚
+ 𝑔𝑖, (21) 

where⁡𝑥̈𝑖 is the acceleration of the centroid of the block; 𝑥̇𝑖 the velocity of the centroid of the 

block;  𝛼 is the viscous (mass-proportional) damping constant; ⁡𝐹𝑖 is the sum of forces acting 

on the block (contact  + applied external forces, except gravitational forces); ⁡𝑚 is the mass of 

the block; and 𝑔𝑖 is the gravity acceleration vector. 

The rotational motion of an undamped rigid body can be most efficiently described if referred 

to the principal axes of inertia of the body. However, blocks in 3DEC are oriented typically in 

random directions compared to the global coordinate axes of the system. Because velocities 

are small, the rotational equations can be simplified. Accurate representation of the inertia 

tensor is not essential. Therefore, in 3DEC only an approximate moment of inertia is 

calculated, based upon the average distance from the centroid of vertices of the block. This 

allows the rotational equations to be referred to the global axes. The angular acceleration (𝜔𝑖) 

about the principal axis can be calculated by equation 22: 

𝜔̇𝑖 + 𝛼𝜔𝑖 =
𝑀𝑖

𝐼
, (22) 

where 𝛼 is the viscous (mass-proportional) damping constant; 𝑀𝑖 is total torque; ⁡and⁡𝐼 is the 

approximate moment of inertia. For quasi-static analysis, isotropic inertia tensor is only used 

in 3DEC. For dynamic problems, the real inertia tensor is required. Time integration of the 

equations of motion is done with the central finite difference scheme. The velocities and 

angular velocities are calculated as follows: 

𝑥̇𝑖 (𝑡 +
∆𝑡

2
) = [(1 − 𝛼

∆𝑡

2
) · 𝑥̇𝑖 (𝑡 −

∆𝑡

2
) + (

𝐹𝑖(𝑡)

𝑚
+ 𝑔𝑖) · ∆𝑡] ·

1

1 + 𝛼
∆𝑡
2

 
(23) 

𝜔𝑖 (𝑡 +
∆𝑡

2
) = [(1 − 𝛼

∆𝑡

2
) · 𝜔𝑖 (𝑡 −

∆𝑡

2
) + (

𝑀𝑖(𝑡)

𝐼
+ 𝑔𝑖) · ∆𝑡] ·

1

1 + 𝛼
∆𝑡
2

 
(24) 

The increments of translation and rotation are given by 

∆𝑥𝑖 = 𝑥̇𝑖 (𝑡 +
∆𝑡

2
) · ∆𝑡 

(25) 

∆𝜃𝑖 = 𝜔𝑖 (𝑡 +
∆𝑡

2
) · ∆𝑡 

(26) 
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The position of the block centroid is updated as: 

𝑥𝑖(𝑡 + ∆𝑡) = 𝑥𝑖(𝑡) + ∆𝑥𝑖 (27) 

The location of the vertices is calculated with the help of the displacement of the centroid plus 

the rotation calculated earlier. 

3.5 Mechanical damping 

Damping is applied in 3DEC to decrease false oscillations originating from the explicit nature 

of the time integration technique, and to facilitate to reach a force equilibrium state as quickly 

as possible. Damping has to fulfill two different (and partly contradicting) roles in a 3DEC 

simulation at the same time: (1) it has to represent the physically existing energy dissipation 

in the system; and (2) it has to ensure numerical stability and fast convergence. Two forms of 

damping can be applied in 3DEC. The first one is named “adaptive global damping”, in 

which viscous damping forces are used, but the viscosity constant is continuously adjusted in 

such a way that the power dissipated by damping is a given proportion of the rate of change of 

kinetic energy in the system. This suggested proportion is 50% (ITASCA, 2004), chosen 

according to exhaustive numerical experimenting by the developers of 3DEC.  

In the second form named “local damping”, different damping force and moment components 

are applied on every degree of freedom. Every component is proportional to the magnitude of 

the unbalanced force or moment. For this scheme, referred to as “local damping”, the 

direction of the damping force is always opposite to the actual translational or rotational 

velocity.  

If the system tends to an equilibrium state (e.g. to a state with constant velocities), local 

damping gradually disappears, and becomes zero in the equilibrium state. The adaptive global 

damping is efficient when the system oscillates around the equilibrium state (ITASCA 2004). 

Preliminary experiences gained on test examples showed that shorter computational time was 

needed to find the equilibrium state when adaptive global damping was used, so in the static 

analysis in the present paper adaptive global damping was used. A convergence test has also 

been performed and it was found that the results were not affected for values of damping 

different from 0.5. So the default value 0.5 has been used in the present investigations. 

3.6 Numerical stability 

The central difference method is only conditionally stable. To avoid numerical instabilities, a 

limiting timestep is defined in 3DEC and the user is allowed only to decrease it. In case of 

rigid elements, the limiting timestep is calculated by analogy to a simple degree-of-freedom 

system, as: 

∆𝑡𝑏 = 𝑓𝑟𝑎𝑐 · 2 ·⁡(
𝑀𝑚𝑖𝑛

𝐾𝑚𝑎𝑥
)
0.5

, 
(28) 

where 𝑀𝑚𝑖𝑛 is the mass of the smallest block in the system;⁡𝐾𝑚𝑎𝑥 is the maximum contact 

stiffness;⁡𝑓𝑟𝑎𝑐 is a user-defined value that accounts for the fact that a block may be in contact 

with several neighbouring blocks. The simulations in the present paper were done with the 

default value, frac = 0.1. 
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4. Computational modelling of skewed masonry arches 

4.1. Development of the arch geometry 

Geometric models representing skewed masonry arches constructed using different 

construction methods have been generated. Since only polyhedral elements with planar faces 

can be generated in 3DEC, for the construction of even slightly concave elements, adjacent 

convex polyhedral blocks were generated and joined together. The variation of geometrical 

characteristics for the arches used in the computational analysis is shown in Table 1.  

Table 1. – Variation of the geometrical characteristics for the arches used in the 

computational analysis. 

Radius of the 

arch (m) 

Width of 

the arch (m) 

Angle of skew 

(degrees) 

Length-to-width ratio 

of the voussoirs 

Block width 

(m) 

3.00 5.00 0; 15; 30; 45 0.5; 1; 1.5; 2; 3; 4; 5 0.250 

 

 

4.1.1 False skew arch 

For the construction of the geometry of the false skew arches, blocks generated in a stretcher 

bond pattern by assigning a predefined off-set to every second course. The construction 

process for a false skew arch is shown in Figure 8. Initially, a wide regular arch has been 

constructed (Figure 8a). The arch was then intersected by two vertical skew planes defining 

the angle of skew (Figure 8b), leaving an irregular end finish which later “corrected” by 

adding adjacent blocks (Figure 8c). Typical geometries of false skew arches with different 

angles of skew are shown in Figure 9. 
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(a) 

 

 
(b) 

 

(c) 

 

Figure 8  Development of a false skew arch from a regular arch 
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(a) Angle of skew is 15° 

 

(b) Angle of skew is 45° 

Figure 9– Geometrical models of skewed masonry arches constructed using the false method 

4.1.2 Helicoidal method 

For the generation of the skewed masonry arches using the helicoidal method, the edges of the 

masonry units were not straight and the faces were not planar. The voussoirs were divided 

into tetrahedral parts, which joined together to form the masonry unit blocks. For the 

construction of the helicoidal method, three types of masonry units are generated (Figure 10). 

These are: 

 Support units: These elements connect the abutments with the voussoirs. 

 Regular units: These form the majority of the masonry units and are identical in 

shape and size. 

 Quoins: These masonry units represent the face of the arch. 
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Figure 10 – Elements of the helicoidal skew arch:  quoins (top left), normal units (top right), 

support elements (bottom) 

 

Typical geometries of skew arches using the helicoidal method with different angles of skew 

are shown in Figure 11. 

 

  

Regular voussoirs 

Support units 

Quoins 
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(a) Angle of skew is 15° 

 
(b) Angle of skew is 45° 

Figure 11 – Geometrical models of skewed masonry arches constructed using the helicoidal 

method  
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4.1.3 Logarithmic method 

For masonry skewed arches constructed with the logarithmic method, the faces of any of the 

voussoirs in the arch are not planar. During construction of skew masonry arches based on the 

logarithmic method, mortar is filled between the arches to overcome this geometrical 

difficulty. However, in 3DEC only polyhedral bodies can be generated with planar faces 

(mortar represented as zero thickness interface). Hence, voussoirs were split into tetrahedrons 

and joined together. Also, adjacent courses were generated such that they ran in a stretcher 

bond. Figure 12 shows masonry arches with different skew angles constructed using the 

logarithmic method. As the angle of skew increases, the unit width at the acute angle also 

increases while the width of the unit at the obtuse angle decreases. 

 
(a) Angle of skew is 15° 

 
(b) Angle of skew is 45° 

Figure 12 – Geometrical models of skewed masonry arches constructed using the logarithmic 

method 

5. Material parameters and boundary conditions 
Each masonry unit of the arch is represented by a rigid block separated by zero thickness 

interface at each joint. The density of each block was equal to 2,700 kg/m
3 

(Sarhosis et al. 

2014). However, from a sensitivity study carried out by Sarhosis et al (2014), it was found 

that the critical barrel thickness does not depend on the density of the blocks. The zero 

thickness interface between adjacent blocks has been modelled using the elastic perfectly 

plastic Coulomb-slip failure criterion, endowed with a tension cut-off. The joint interface 

contact parameters obtained from Jiang and Esaki (2002) are shown in Table 2. Joint tensile 

strength, cohesive strength and dilation angle assumed zero. However, frictional resistance 

between masonry units has been allowed. Since the intention of the authors was to investigate 

the effect of the arch ring geometry, the abutments of the arch were modelled as rigid supports 
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in the vertical and horizontal directions. Self-weight effects were assigned as gravitational 

load. Gravitational forces give rise to compressive forces within the blocks of the arch and 

result in the stabilisation of the arch. The model brought into equilibrium under its own self-

weight and displacements at the intrados of the arch have been recorded. The model was 

considered to be in equilibrium when the maximum out-of-balance force was less than 

0.001% of the total weight of the structure. Failure considered when the maximal 

displacement exceeded 0.2m. 

 

Table 2. Properties of the joint interface for the development of the computational models  

Joint Normal 

Stiffness (N/m
3
) 

Joint Shear Stiffness 

(N/m
3
) 

Joint Friction 

(degrees) 

Joint Dilatation 

Angle (degrees) 

7.64×10
9
  1.79 ×10

9
  40°  0° 

  

6. Verification study  
6.1. Rotational failure mode 

The problem of identifying the minimum thickness of regular (e.g. zero skew) circular 

masonry arches when subjected to self-weight have been investigated by several researchers 

(Ochsendorf (2002), Heyman (1966), Alexakis and Makris (2013)). From these studies, the 

minimum thickness and location of the imminent intrados hinge identified. Couplet (1730) 

based on observations noted that for a full semi-circular arch, the angular position of the 

haunches’ hinges (βcr) is at 45° from the vertical axis and the minimum thickness tmin is equal 

to 0.101 R, where R is the distance from the centre of circle to the mid-surface thickness of 

the arch. Two centuries later, Heyman (1977) using analytical formulations found that for a 

semi-circular arch, βcr is equal to 58.82° and tmin is equal to 0.105965  R. However, as 

described by Cocchetti et al. (2011), Heyman’s work has been based on under-conservative 

assumptions, including: a) the true location of centre of gravity of each ideal voussoir of the 

arch is not on the centre-line of the arch; and b) the position of thrust line at the intrados 

hinges is tangential to the intrados. A more accurate approach derived from Milankovitch 

(1907), found that 𝛽𝑐𝑟⁡is equal to 54.48°⁡and 𝑡𝑚𝑖𝑛⁡is equal to⁡0.107478⁡ × 𝑅 (Alexakis and 

Makris 2013; Ochsendorf 2002). In the present study, the numerical results obtained using 

DEM found to be very close to the theoretical solution of Milankovitch (Figure 13). From 

Figure 13, the precision of the developed DEM model is ± 1.5° and ± 0.0005 ×⁡R. The 

relatively small difference in results arises from a) the discrete element model consists of 

discrete blocks, while Milankovitch’s derivations assumed a homogenous material where 

cracks can develop anywhere along the arch; b) in the discrete element model the equations of 

motion are written always on the current geometry, which means that the changes in shape 

caused by the selfweight are taken into account. 
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Figure 13 – Angular position of the haunches’ hinges βcr, and critical barrel thickness 

obtained from the developed numerical model based on DEM 

 

6.2. Necessary angle of friction 

The DEM model also verified by investigating the sliding type of failure. Sliding failure 

occurs when the thrust-force reaches the boundary of the cone of friction (α = φ) (Figure 14). 

The angle has been formed using the thrust-force and the contact normal determines the 

necessary angle of friction to avoid sliding type of failure. 

 

Figure 14 – Cone of friction 

A rectangular arch with radial joints was built in the computational model where the barrel 

thickness was equal to the critical barrel thickness. The minimum thickness of a regular arch 

is the thickness that will bring the arch at the verge of becoming a five-hinge mechanism. 

Therefore, the thrust-line will pass by the imminent hinge of the arch at the extrados point at 

the crown (O2) and at the springing (O1) (Makris and Alexakis (2013). The horizontal force 

(H) at the crown has been determined from the moment equilibrium written to O1 (Figure 

15). 

∑𝑀𝑖
(𝑂1) :⁡− 𝑊 (𝑅 +

𝑡

2
− 𝑥𝑐) + 𝐻 (𝑅 +

𝑡

2
) = 0 

(29) 
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The direction of the thrust-force at a given β angle has been determined as arctan(Wβ/H), 

where Wβ is the weight of the slice according to Figure 15b.  

            
(a) (b) 

Figure 15 - Circular arch with radial joints at the verge of collapse 

The necessary angle of friction as a function of β angle is shown in Figure 16. The maximal 

frictional resistance should exist at the springing line of the arch, where β=π/2. The 

analytically observed minimum necessary angle of friction that prevents shear sliding is equal 

to 21.57°. In the developed discrete element model, a shear sliding failure mechanism 

observed when friction angle was 21°. In the case that the friction angle increases to 22°, the 

arch is standing. 

 
Figure 16  – The necessary angle of friction 

 

7. Results and discussion 
A sensitivity study carried out to investigate the variation of the minimum (or critical) barrel 

thickness of an arch with respect to: 
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a) The construction method (e.g. false, logarithmic, helicoidal) 

b) The angle of skew; 

c) The size and shape of the masonry units; and 

d) The joint friction angle between adjacent masonry units. 

During the calculation of the minimum thickness of the arch, the resolution was ±0.0005R 

and increments of 0.001R were used; where R is the radius of the barrel (see Figure 3). 

 

7.1 Influence of the construction method on the minimum thickness of skewed masonry 

arches 

Twelve different in geometry computational models have been created using 3DEC. Table 3 

shows the geometrical properties of the arches used in the analysis. For all arches, the joint 

friction angle kept constant and equal to 40 degrees. The angle of skew varied from 0° 

(regular arch) to 45° and the length to width ratio of the masonry was kept constant (L/W = 2). 

Table 3 – Geometric properties of the arches used in the analysis 

 

Figure 17 shows the critical barrel thickness over radius (t/R) for each of the studied arches.  

From Figure 17, for the false skew arch, as the angle of skew increases from 0 to 45 degrees, 

the minimum thickness required to sustain the self-weight of the arch increases. However, for 

arches constructed using the logarithmic and the helicoidal method, as the angle of skew 

increases from 0 to 45 degrees, the minimum thickness required to sustain the self-weight of 

the arch decreases. The reason for the difference in results between the different construction 

methods is mainly due to their failure mechanism. For the false skew arch, the application of 

the self-weight induces a five hinge mechanism. The developed hinge lines are straight and 

parallel to the abutments (Figure 18). Similar results are also reported by Sarhosis et al. 

(2014). However, the failure mechanism of the helicoidal and logarithmic method differs to 

that of the false skew arch. In case of helicoidal and logarithmic method, hinges developed in 

a zig-zag pattern parallel to the abutments of the arches. This was mainly due to the 

arrangement of the voussoirs in the arch (Figure 19 and Figure 20). The zig-zag hinge 

pattern development increases the frictional resistance and shear sliding at the hinge locations. 

Radius of 

the arch 

(m) 

Width of 

the arch 

(m) 

Angle of skew 

(degrees) 

Length-to-width ratio 

of the masonry units 

Width of the 

masonry unit 

(m) 

3.00 5.00 0; 15; 30; 45 2.00 0.250 
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Figure 17.  – Influence of the angle of skew on the critical barrel thickness 

 

(a) 

 

(b) 
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(c) 

Figure 18.  – Failure mode of false skew arch (angle of skew 45°) 

 

(a) 
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(b) 

 

(c) 

Figure 19.  - Failure mode of logarithmic masonry skew arch (angle of skew 45°) 

 

(a) 
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(b) 

 

(c) 

Figure 20  Failure mode of a helicoidal skew arch (angle of skew 45°) 

 

7.2 Influence of the masonry unit size on the critical barrel thickness of the arch 

A sensitivity study has been undertaken to investigate the influence of the size of the masonry 

unit on the critical barrel thickness and failure mode of masonry skewed arches. The length 

(L) to width (W) ratio of masonry units ranged from 0.5 to 5 while the height of the masonry 

units assumed equal to the arch thickness (Figure 21). The geometric parameters for the 

different arches considered in the computational analysis are shown in Table 1. The joint 

friction angle kept constant and equal to 40°.  
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(a) Masonry unit length to width ratio 

equal to 1:2 

(b) Masonry unit length to width ratio 

equal to 5:1 

Figure 21  5 Different element shapes (logarithmic method) 

Figure 22 shows the effect of the shape of masonry unit (L/W) to the minimum thickness over 

the radius of the arch (t/R) for semi-circular masonry skewed arches constructed using the 

false method. From Figure 22, the length to width ratio of a masonry unit should be greater 

than the tan(Ω), for equilibrium of masonry skewed arches constructed using the false method 

and subjected to their own weight: 

𝐿

𝑊
≥ tan⁡(Ω), (30) 

where Ω is the angle of skew. From Figure 22 and for false skew arches, as the length to 

width ratio of masonry units increases, the critical barrel thickness tends to be equal to the 

critical barrel thickness of a regular arch.  

 

L 

W Masonry Unit 
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Figure 22.  – Effect of element shape – False skew arch 

In addition, it was also observed that the failure mode will differ depending on the size of the 

masonry units (Figure 23). Assuming that the compression trajectories are parallel to the face 

of the arch, then a moment develops which leads to cracking at the face of the arch (Figure 

24). 

 

Magnified view  

 

Figure 23 – Failure mode of false skew arch in case of short element length 
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Magnified view 

Figure 24  – Moment arising from the skew force system 

From Figures 25 and 26 for the arches constructed using the helicoidal and logarithmic 

method, as the length of the masonry units increases, the critical barrel thickness linearly 

decreases. The failure mechanism for the masonry skew arches constructed according to 

helicoidal and logarithmic method influences significantly the critical barrel thickness. For 

masonry units with high L/W ratios, the hinges develop in zig-zag shape and neighbouring 

masonry units have to slide upon each other, overcoming the shear resistance in these 

contacts. Therefore, a lower barrel thickness compared to the false skew arch is required for 

the arch to stand under its self-weight (Figures 19 and 20).  

In case of helicoidal method, there was no possibility to create arbitrary element length-to-

width ratio because of the restrictions made during the creation of geometry. Specific L/W 

ratios could be analysed only. 
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Figure 25  Effect of element shape – Logarithmic method 

 

Figure 26– Effect of element shape – Helicoidal method 
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7.3 Influence of joint friction angle on the minimum barrel thickness of skewed 

masonry arches 

A sensitivity study carried out and the joint friction angle varied from 20 to 90 degrees. 

Although joint friction angles greater than 60 degrees are not realistic, such analyses carried 

out to investigate the effect of infinite frictional resistance between masonry units. The 

geometric parameters for the different arches considered in the computational analysis are 

shown in Table 4. 

Table 4 - Geometrical parameters of the arches used in the analysis 

Radius of 

the arch (m) 

Width of the 

arch (m) 

Angle of skew 

(degrees) 

Length-to-width ratio 

of the masonry unit 

Width of the 

masonry unit (m) 

3.00 5.00 45° 2:1 0.250 

 

Figure 27 shows the effect of joint friction for 45° angle of skew. From Figure 26, the 

critical barrel thickness decreases, as the joint friction angle increases. Also, the joint friction 

angle required to avoid sliding failure for a 45 degrees masonry skew arch constructed using 

the false method is 32.5 degrees. For values of angle of joint friction lower than 32.5 degrees, 

the arch collapses irrespective of the thickness of the barrel. So, the permissible joint friction 

angle for the arch to stand is much higher than the permissible joint friction angle for a regular 

arch (i.e. equal to 22 degrees) to avoid sliding type of failure (Figure 16). Furthermore, from 

Figure 27 and for a false skew arch, the critical barrel thickness is constant when the angle of 

friction is higher than 40°. Also, Figure 28 Figure 28shows the failure mode of false skew 

arch in case of joint friction angle smaller than 32.5°. From Figure 28, the masonry units at 

the face of the arch slide out, which leads to the collapse of the arch. 

 

Figure 27– Effect of joint friction for 45° angle of skew 
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Magnified view  

Figure 28 – Failure mode of false skew arch in case of friction angle smaller than 32.5° 

 

For masonry skewed arches (45° angle of skew) constructed using the helicoidal and 

logarithmic method, the critical friction angle to avoid sliding is 27.5 degrees (Figure 27). 

Also, the critical barrel thickness decreases with an increase of the frictional resistance. From 

Figures 19 and 20, for skew arches constructed using the helicoidal and logarithmic method, 

hinges develop in a zig-zag shape. Also, at the location of the hinge, adjacent masonry units 

slide upon each other. Since resistance against sliding increases with higher angle of friction, 

the critical barrel thickness to resist the self-weight of the arch will also decrease. For 

masonry skew arches constructed using the false method, the developed hinge lines are 

straight and parallel to the abutments. Hinge develops due to pure rotation of masonry units 

and there is no sliding or shear failure. Therefore, the critical barrel thickness is independent 

of the joint friction angle. Figures 29, 30 and 31 show the ratio of shear to normal stress 

distribution at the joints for different in geometry masonry skewed arches. The joint friction 

angle for all arches kept constant and equal to 40°. The red domains represent joints where 

sliding resistance is nearly reached (arc tan(0.839)  40.0°). From Figure 29 and for the 

masonry skewed arches constructed using the false method, there are two main regions where 

high frictional resistance is required to avoid shear sliding. These are: a) around the abutments 

at the obtuse angle; and b) around the unsupported part above the acute angle of the arch. The 

arrangement of the voussoirs is exactly alike in case of helicoidal and logarithmic method at 

the neighbourhood of the crown. The difference in the arrangements of the masonry units 

between the two methods is at the area close to the abutments of the arch. At this point the 

ratio of the shear versus normal contact stresses is high (Figure 30). This phenomenon was 

already known in the 19
th

 century in the book of Hyde (1899). This is why the full-centered 

(Figure 3: opening angle: α = 90°) helicoidal skew arch was avoided. The logarithmic method 

shows no tendency to slide around the abutments (Figure 31), but in case of high angle of 

skew, there is relatively high friction utilization around the imminent hinge location at the 

intrados. 
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(a) Angle of skew 15° 

 

 

(b) Angle of skew 30° 

 

 

(c) Angle of skew 45° 

Figure 29 – Shear / normal subcontact stress in case of false skew arch 
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(a) Angle of skew 15° 

 

 

(b) Angle of skew 30° 

 

 

(c) Angle of skew 45° 

Figure 30 – Shear / normal subcontact stress ratio in case of helicoidal method 

 

 

 



    37 

 

 

 

(a) Angle of skew 15° 

 

(b) Angle of skew 30° 

 

 

(c) Angle of skew 45° 

Figure 31 - Shear / normal subcontact stress ratio in case of logarithmic method 
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8. Conclusions 
In this paper, the problem of computing the minimum barrel thickness of semi-circular 

skewed masonry arches when subjected to their self-weight was investigated. A three-

dimension computational model based on the Discrete Element Method (DEM) has been 

developed. Within DEM, each masonry unit of the arch was represented by a rigid element. 

Mortar joints were represented as zero thickness interface elements which can open and close 

according to the magnitude and direction of stresses applied to them. Initially, the model was 

verified against results obtained from rectangular masonry arches. The numerical simulations 

provide good agreement with the analytical solution derived by Milankovitch. Then, a 

sensitivity study was carried out to investigate the minimal barrel thickness with respect to 

the: a) angle of skew; b) construction method (e.g. false, helicoidal, and logarithmic method); 

c) size of masonry units; and d) frictional resistance between masonry units. From the results 

analysis it was found: 

- The minimum barrel thickness for a false skew arch increases when the angle of skew 

increases from 0° to 45°. The helicoidal and logarithmic methods show a different 

behaviour. With the increasing angle of skew the minimal barrel thickness decreases.  

- As the angle of skew and the L/W ratio of the masonry units’ increase, the minimum barrel 

thickness required to sustain the self-weight of the arch decreases.  

- The joint friction angle significantly influences the mechanical behaviour of skew arches. 

From the three investigated construction methods, the false skew arch proved to be the 

most sensitive to the decrease of frictional resistance below 40. From Figure 27, the false 

skew arch does not have that additional resistance due to friction along the “zig-zag” 

hinge, which is beneficial for helicoidal and logarithmic arches. The biggest difference 

between the geometry of helicoidal and logarithmic skew arches can be found around the 

abutments. The helicoidal method shows high shear stresses and the danger of sliding 

occurs. Presumably this was the reason why the full semi-circular arch constructed 

according to helicoidal method was avoided (Hyde 1899). 

Also, it is concluded that the DEM is an appropriate technique to simulate the collapse of 

masonry arches. The discrete element method allows for the simulation of rupture 

phenomenon and thus to manage discontinuities in an elegant and robust way. In the 

framework of this study there were no attempts to analyse the effect of backfill, spandrel 

walls or any other construction detail of a masonry arch bridge. It is anticipated that future 

studies will also include the effect of regulatory live loads.  
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