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Abstract 
Heyman’s Safe Theorem is the theoretical basis for several calculation methods in masonry 

analysis. According to the theorem, the existence of an internal force system which 

equilibrates the external loads guarantees that the masonry structure is in a stable equilibrium 

state, assuming that a few conditions on the material behaviour are satisfied: the stone blocks 

have infinite compressional resistance, and the contacts between them resist only compression 

and friction. This paper presents simple examples in which the Safe Theorem fails: collapse 

occurs in spite of the existence of an equilibrated force system. A theoretical analysis of the 

stability of assemblies of rigid blocks with frictional contacts is then introduced: the virtual 

work theorem is derived, and a refined formulation of the Safe Theorem is given. 

 

 

1. Introduction 
 

Using the idea proposed by Kooharian (1952), a classic paper by Heyman (1966) suggested 

applying the concepts of Plastic Limit State analysis to masonry systems in cases when the 

collapse of the structure is caused by instability resulting from the unsuitable geometry of the 

structure. Heyman made the following assumptions about the material: 

(i)  Stone has no tensile strength. 

(ii) The compressive strength of the stone is infinite. 

(iii) Sliding of one stone on another cannot occur. 

In addition, though not stated explicitly, Heyman also assumed that the blocks are rigid, so 

that the same given geometry of the structure is valid for any analysed force system which the 

structure is able to equilibrate.  

 

Based on these assumptions, Heyman stated the Safe Theorem for masonry arches: “If a line 

of thrust can be found which is in equilibrium with the external loads and which lies wholly 

within the masonry, then the structure is safe.” (Kooharian (1952) stated the dual pair of the 

safe theorem, i.e. the Unsafe Theorem, in the following way: “Collapse will occur (or will 

have occurred previously) if a kinematically admissible collapse state can be found. A 

“kinematically admissible” collapse state is one characterised by the condition that in a 

virtual displacement of the mechanism, the work done by the external loads must be at least 

as large as that done by the internal forces.” The Unsafe Theorem, often referred to as the 

kinematic theorem, will not be considered in the present paper, which focuses purely on the 

Safe Theorem. 

 

The Safe Theorem has been successfully applied in a vast number of engineering problems in 

practice, particularly to arches and vaults; in spite of the fact that neither Heyman nor 
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Kooharian gave a precise proof for these theorems. It was implicitly accepted that Plastic 

Limit Analysis can be directly applied to check whether the structure stands in the given 

geometry under its self weight, without making a distinction between the two types of 

problems which may occur in the stability analysis of arches and vaults:  (1) the stability 

analysis of a structure which is already definitely stable under its selfweight and which is then 

loaded by an additional, one-parameter load whose magnitude starts to increase from zero, 

and whose allowable magnitude is to be determined, and (2) the stability analysis of a 

structure under a non-parametric load such as, for instance, its selfweight . (Speaking in the 

language of plastic limit analysis, for Problem (1) the zero load factor is within the domain of 

admissible load factors if the structure was found to be safe for its self weight.) While the 

application of Plastic Limit Analysis seems to be straightforward for Problem (1) if certain 

assumptions on the structural behaviour are met, the situation is different for Problem (2): if 

the structure is not in equilibrium for its selfweight, a stable state cannot be reached by 

proportionally decreasing the selfweight by any factor. The validity of the Safe Theorem for 

Problems (1) and (2) for masonry structures consisting of rigid blocks is the subject of the 

present study. 

 

It will be useful to recognize how thinking on masonry has changed over the past few 

decades. Engineers in the 1950s and 1960s tended to think of masonry not as a collection of 

precisely described individual blocks, but rather as a kind of a continuum whose behaviour 

could be described with the help of homogenization methods, e.g. in soil mechanics. This 

view can be recognised in Heyman’s approach and in that of several later authors such as 

Como (1992). The following decades, however, brought dramatic developments in both 

computational techniques and the hardware widely available to engineers, and this 

development led to masonry structures being considered rather as a collection of discrete, 

well-defined blocks, in which the displacement of each block should be analysed separately. 

A few examples of this discrete way of thinking are the Discrete Element Method (e.g. UDEC 

invented by P.A. Cundall, 1971; DDA by G.-H. Shi, 1988), funicular analysis proposed by 

O’Dwyer (1991), thrust network analysis in 2D (Block, 2005) and in 3D (Block and 

Ochsendorf, 2007). From the 1980s onwards it became numerically possible to simulate 

simple masonry structures by modelling the state of each individual block separately and by 

the 1990s real practical problems were frequently being solved with the help of discrete 

computational methods.  

 

These developments also influenced views of Heyman’s condition (i). In reality, stone or 

brick voussoirs do resist tension and joints (which are dry, or with very weak mortar) between 

blocks are the only parts of the system where it is  reasonable to assume no-tension behaviour. 

While some authors (e.g. O’Dwyer, 1999, Huerta, 2001, J. A. Ochsendorf et al, 2004) 

continue to use the original formulation of the conditions, others (for instance Boothby, 2001 

or D’Ayala and Tomasoni, 2008), thinking “discretely”, replaced Heyman’s assumption (i) by 

the requirement (perhaps physically more realistic on the scale of voussoirs) that only joints 

are no-tensional. Boothby (2001) formulated the basic assumptions of the Safe Theorem as 

follows: 

(a) the masonry units are infinitely rigid; 

(b) the masonry units are infinitely strong; 

(c) the masonry units do not slide at the joints; 

(d) the joints transmit no tension. 

 

The Safe Theorem can now be stated thus: “If there exists any system of forces satisfying (a-d) 

and being in equilibrium with the loads, then the structure is safe.“ It was generally accepted 
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without proof that the Safe Theorem, being successful in so many practical applications even 

for selfweight, would remain valid if Heyman’s no-tension criterion for the material as a 

whole is replaced by a no-tension criterion for joints only  (assuming, of course, that frictional 

sliding does not occur). 

 

The occurrence of frictional sliding was excluded from the analyses of Kooharian, Heyman 

and the numerous authors who followed them, in order to ensure the validity of the normality 

condition, an indispensable hypothesis of classic limit state analysis. If normality fails the 

uniqueness theorem is no longer valid and nor are the static and kinematic theorems in their 

classic forms. Non-associated flow rules can be applied to plastic limit analysis in the absence 

of normality, although Orduna & Lourenco (2005a) emphasize that the static and kinematic 

approaches cannot be separated and that a mixed formulation must be used and thus a 

multiplicity of solutions can exist in these situations.  

 

For masonry structures, the failure of normality in the case of Coulomb-type frictional contact 

sliding was demonstrated by Drucker as early as 1954. Parland (1982), (1995) also drew 

attention to this. In his contact model surface roughness forces the frictionally sliding contacts 

to dilate. Normality would be valid if the friction angle according to which the tangential 

force is related to the compression force at sliding, and the angle (expressing the surface 

roughness) according to which the normal deformation is related to the tangential deformation 

at sliding were equal. However, there is no physical reason to assume such a coincidence: the 

dilation angle is usually significantly lower.  

 

The lack of normality of Coulomb-type contacts posed a challenging problem for several 

researchers aiming at developing reliable computational techniques for masonry analysis. In 

the limit state method of Livesley (1978, 1992) the problem was solved with the help of 

additional correcting steps. Orduna & Lourenco (2005a) applied a piecewise linear 

approximation of the yield surface for 3D analysis, including torsional failure of the planar 

contacts between voussoirs. They emphasize that the loading history of a structure can 

significantly influence the results of the analysis, and without knowledge of this history the 

reliability of the solutions is questionable. In their next paper (Orduna & Lourenco, 2005b) a 

solution method is presented which is based on an approximate simulation of the loading 

history. For axially symmetric structures and loads, Casapulla and D’Ayala (2001) gave a 

proof for the uniqueness of the solution and presented a computer procedure based on the 

static theorem. Later the method was extended (D’Ayala and Tomasoni, 2008) and by finding 

the optimal thrust surface vaults with more general shapes could be analysed. 

 

These investigations and successful numerical techniques may give the reader the false 

impression that if frictional sliding is excluded from the possible behaviour of masonry 

structures then the plastic limit theorems are valid and that, more particularly, Heyman’s Safe 

Theorem holds. In the present paper the simple examples given  in Section 2 will demonstrate 

that even without the presence of frictional sliding the static theorem may give incorrect 

results. Section 3 introduces the theoretical background of the problem of the Safe Theorem, 

and argues that the theorem holds only for a limited range of displacement systems where the 

tangential component of the relative translations in the joints is zero everywhere. This 

analysis reveals that there are two theoretically different possible ways for a masonry 

structure to collapse in spite of the existence of an equilibrated force system for the analysed 

structure. Finally, Section 4 discusses the results, and presents two very simple examples 

which capture the essence of the two possibilities for collapse.  
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2. Examples when Heyman’s Safe Theorem fails 
 

Section 2 presents two-dimensional examples in which rigid block systems collapse in spite of 

the existence of an equilibrated force system, even though frictional sliding is not present at 

collapse. The failure of Heyman’s Safe Theorem is evident in these examples, and even a very 

inexperienced engineer can easily recognise that the structures portrayed in Figs 1-3 will 

collapse. However, if a similar situation occurs somewhere hidden in a complex 3D structure, 

a computer analysis based on the classic Safe Theorem of masonry structures will find the 

analysed state to be stable, even though failure may occur. The aim of introducing these 

examples is to underline the necessity of finding an improved formulation of the Static 

Theorem for masonry structures. 

 

Example 1: The Overloaded Roof 

This example focuses on the traditional problem of plastic limit state analysis (Problem (1) in 

the Introduction). It shows that a structure which is initially in a stable equilibrium state may 

collapse as a result of increasing load, even though an equilibrated force system  exists for the 

increased load.  

 

The structure is shown in Figure 1a. The three vertical columns are fixed. Block 1 is loaded 

with its given selfweight G1 and with the additional load G2 exerted by the block in the upper 

right corner. Block 1 is in a stable equilibrium state for a zero or negligible G2 for which the 

resultant G  (G1, G2) acts along a vertical line on the left side of point P. As the load G2 

increases, the line of action of the resultant G gradually shifts to the right side of point P. 

Figure 1a shows that even in this case an equilibrated force system satisfying conditions (a-d) 

exists. However, collapse happens in the way shown in Figure 1b.  

 

(a)                                                                                         (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 

The Overloaded Roof, (a) Force system equilibrating the loads, (b) collapse mechanism 
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Example 2: The Buckling Arch 

This example corresponds to the classical arch problem of masonry analysis: the geometry of 

an arch is given (Figure 2a), and the question to decide is whether a structure with this 

geometry is able to balance its selfweight (referred to as Problem (2) in the Introduction). 

 

(a) 
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Figure 2. 

The Buckling Arch, (a) Force system equilibrating the loads, (b) collapse mechanism 

 

This structure consists of five blocks, each having equal selfweight arranged symmetrically 

about a vertical axis. A system of forces is shown in Figure 2a which satisfies conditions (a)-

(d) and keeps the structure (all blocks, and all combinations of blocks) in equilibrium. (The 

force diagram is symmetric, hence for the sake of simplicity only the half of the force diagram 

is shown.) 

 

An important feature of the structure is that the contact between Blocks 1 and 2 consists of 

two parts, CD and DE. In the force system presented here none of these partial contacts carry 
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tension, but the resultant R12 is far outside Block 1 and consequently tension occurs in the 

material of the block.  

 

Figure 2b shows the following displacement system:  

 The displacements are symmetric with respect to the vertical axis, so Block 1 does not 

rotate, and does not translate horizontally either. However, it will translate 

downwards, i.e. a purely vertical, identical translation happens in every point of Block 

1. 

 Block 3 rotates in a clockwise direction about point A, and Block 3’ moves in the 

opposite direction; 

 Block 2 is attached to Block 3 at their common point B, so this point of Block 2 

translates outwards together with Block 3. In addition to this, Block 2 rotates about B 

by a counter-clockwise angle to ensure that point C does not translate horizontally. 

Block 2’ moves in the opposite way.  

 Consequently, the vertical translations of the points where the selfweight forces act are 

downwards.  

The structure collapses according to this displacement system, in spite of the existence of a 

statically admissible force system. 

 

 

Example 3.: The Inclined Tower 

This example illustrates that as a consequence of support displacements, a structure which is 

initially in a stable state is shifted into an unstable equilibrium, which is then erroneously 

found to be safe by the Static Theorem.  

 

(a)                                                                                            (b)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 

The Inclined Tower, (a) Force system equilibrating the loads, (b) Collapse mechanism 

 

The structure in Figure 3 consists of two blocks, the lower of which rests on an inclined 

foundation. For a horizontal or nearly-horizontal foundation the structure would be in a stable 

equilibrium state. As inclination increases, a geometry is reached as shown in Figure 3a: the 

line of action of G2 now goes exactly through point P and consequently in any equilibrated 

force system the contact force between Blocks 1 and 2 must go through point P. Such an 

equilibrated force system is shown in Figure 3a. However, this is not a safe state: when 

subjected to a small perturbation the structure collapses as shown in Figure 3b.  
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Note that there is a basic difference between the examples given above: in Examples 1 and 2 

the structure cannot be in equilibrium at all with the given geometry, while in Example 3 there 

is an equilibrium configuration, although this equilibrium is unstable. 

 

Regarding Examples 1 and 2, the role of frictional resistance in the contacts has to be 

emphasized. In both cases the equilibrating force systems must contain contact forces which 

have a frictional component. Heyman’s basic conditions assume infinite frictional resistance. 

Indeed, without these frictional components the loads could not be equilibrated and therefore 

the erroneous result that these structures are safe would not be produced by the theorem. This 

question will also be considered in the forthcoming theoretical analysis.  

 

 

3. The Static Theorem  
 

In Section 3 the static theorem for masonry structures consisting of rigid blocks with no-

tension Coulomb-frictional contacts will theoretically be derived.  

 

The forthcoming theoretical analysis was greatly inspired by the rigorous proof given by 

Como (1992), (2012) for no-tension continua. That proof is valid without considering any 

load factor or assuming a proportional change of the loads from small values where the 

structure is still in equilibrium up to large values where the structure already collapses. In that 

proof, however, the no-tension behaviour of the voussoirs is assumed: the definite 

requirement is posed there that tension cannot exist in any point of the blocks on any cut.  

 

The analysis in the present paper does not include such a requirement: tension may exist in 

any parts of the blocks except for the contact surfaces which are assumed to be no-tension 

Coulomb-frictional contacts. 

 

3.1 Equilibrium of a masonry system 
 

Geometry 

The structure analysed consists of perfectly rigid blocks (voussoirs) with planar contacts 

between them. A reference point is assigned to every block, which is perhaps (but not 

necessarily) the mass centre of the block. The vector xb denotes the position of the reference 

point of the b-th block (see Figure 4). The translation of the reference point, together with the 

rotation of the block about this point, uniquely determines the displacements of any point of 

the block. The blocks are referred to by their indices b. The vector nbc is the outwards unit 

normal vector of the surface of block b at its contact c. 

 

In addition to the voussoirs that are able to translate and rotate, the structure also contains 

support elements: these are fixed blocks that cannot move. The indices of the support 

elements are set to be larger than the index of any movable block.  

 

The contacts formed by any two blocks are referred to according to their contact index c. If 

two blocks, b1 and b2, form a contact, then the block with the smaller index is considered to be 

“the first block” of the contact and the other block (with the larger index) is “the second”. 

Hence in a contact between a movable block and a support element the support is always “the 

second”.   

 

Forces 
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The blocks are perfectly rigid, and able to resist tension, so there is no restriction on the sign 

or magnitude of the principal stresses in any internal point of a block (the strains are zero). 

Conservative external static loads act on the blocks; they may be concentrated forces, or 

forces distributed within the volume of or along a part of the surface of the blocks. The 

external forces – but not those contact forces exerted  by the neighbouring blocks, which will 

be dealt with a few rows below – are reduced to the mass centre, and produce a force and a 

moment (Gb, Mb), as shown in Figure 4. 

 

 

 

 

 

 

  

 

 

 

Figure 4.  

 

A distributed force acts on block b along the contact surface, expressed by its neighbour on 

the other side of the contact. This distributed force consists of a normal and a tangential 

component both of which may vary from point to point along the contact. At any point, the 

normal component can only be compressional, while the direction of the tangential 

component is arbitrary in the plane of the contact. According to Coulomb’s law of friction, at 

any point of the surface the magnitude of the tangential component does not exceed the 

magnitude of the normal component times the friction coefficient (f). 

 

The resultant of the normal components acting on c is a compression force, QbcN, whose point 

of action cannot be outside the contact area. The point of action of QbcN will have a particular 

importance: this will be referred to as “the contact point”, whose position vector will be 

denoted by xc : this is either an internal or a boundary point of the contact surface. The vector 

pointing from the centre of b to the contact point is rbc. Note that the location of the contact 

point is not the geometrical characteristic of the structure: for different force systems acting 

on the same structure, different xc and rbc vectors will be found. 

 

Let the tangential component of the distributed contact force be reduced to the contact point, 

resulting in a concentrated force vector QbcT parallel to the contact surface, and a moment 

vector Tbc which is perpendicular to the contact surface. Since the distributed tangential forces 

obey the Coulomb relation,  QbcT  f  QbcN, but in the presence of a nonzero torsional 

moment  QbcT cannot reach the value f  QbcN . 

 

Using these notations, the equilibrium of block b is expressed by the following equations: 

 

 (1) 

 
 (2) 

 

 

The summation for index bc goes along the contacts of block b. The symbol  stands for the 

vectorial product. 
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The total structure consists of several blocks each of which has to be in equilibrium. Some of 

the blocks are in contact with non-displacing supports; the forces expressed by these contacts 

on the movable blocks are treated according to exactly the same manner.  

 

The external forces and moments can be collected into a hypervector (G1, M1; G2, M2; …), 

symbolically denoted by (G, M). Similarly, the contact forces and torsions for the hypervector 

(Q1, T1; Q2, T2; …) are shortly written (Q, T). 

 

 

Virtual displacement systems 

 

The degrees of freedom of the structure are the translation and rotation of all the blocks; a 

system of virtual displacements is uniquely defined by specifying the infinitesimally small 

ub translations of the centres of blocks and the b rotations of the blocks about their centres. 

These vectors are collected into the hypervector (u, ), which consists of as many ub and 

b vectors as the number of voussoirs in the structure.  

 

Since the displacements are small, the translation of a contact point bc on block b can be 

calculated as: 

bc b b bc  u u r    (3) 

 

 

 

 

 

 

 

 

Figure 5.  

 

The blocks b1 and b2 form contact c so that b1 < b2: as mentioned above, by definition the 

block with the smaller index is considered as “the first block” of the contact and the other is 

“the second”. The virtual relative translation dc assigned to the contact point is defined as the 

relative translation of the contact point on the first block with respect to the second block. 

Similarly, the virtual relative rotation c of the contact is understood as the rotation of the 

first block relative to the second block. The translational and rotational deformation of the 

contact is: 

 

1 2 1 1 1 2 2 2
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  
 (4) 

 

For those contacts which are formed between a block and a support, the same definition holds, 

but since for the support (i.e. for the second entity of the contact) the translation of any point 

is zero, the virtual relative translation belonging to the contact has a simpler form:  

 

1 2 1 1 1
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c b c b c b b b c

c b
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These contact deformations are collected into the (d, ) virtual deformation vector, a 

hypervector containing as many dc and c vectors as the number of contacts in the analysed 

structure.  

 

Note that apart from being infinitesimally small, no other restrictions apply for the chosen 

translations and rotations; correspondence to the correct mechanical behaviour of the masonry 

system is not required at all. Hence, in the system of virtual displacements the blocks can e.g. 

penetrate into each other, translate along each other in any tangential direction independently 

of the magnitude and direction of frictional forces acting at the contacts etc.  

 

 

The Theorem of Virtual Displacements 

 

Now the equilibrium equations (1) and (2) will be transformed into another form. Eqs. (1) are 

true if and only if for any arbitrarily chosen virtual translations of the blocks, the scalar 

equations 

 

 
( )

0b b bc b

bc

   G u Q u   (6a) 

 

hold for every block. (Here the symbol  denotes scalar product.) Similarly, eqs. (2) are true if 

and only if for any virtual rotations of the blocks  

 

  
( )

0b b bc bc bc b

bc

     M T r Q   (6b) 

 

holds. Considering the whole system of blocks and summing up the above equations 

according to b, the sufficient and necessary condition of the equilibrium is that for any 

arbitrarily chosen system of virtual displacements (u, ):  

 

        
( ) ( ) ( ) ( ) ( ) ( )

0b b bc b b b bc bc bc b

b b bc b b bc

   
            

   
   

     G u Q u M T r Q    . (7) 

 

Using the identity        a b c b c a , the last term on the left side of this scalar equation 

can be rearranged: 

 

        
( ) ( ) ( ) ( ) ( ) ( )

0b b b b bc b bc b bc b bc

b b b bc b bc

   
             

   
   

     G u M Q u T Q r    

 (8a) 

or equivalently: 

      
( ) ( ) ( ) ( ) ( )

0b b b b bc b b bc bc b

b b bc b bc

   
            

   
   

    G u M Q u r T      (8b) 

 

On the left side the second term is a summation along the contacts in the system. Those 

contacts which are formed by two blocks (denote them by i from now, referring to “internal” 
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contacts) are considered twice (i.e. once for the first block and once for the second block of 

the contact), while the contacts between a block and a support (denoted below by e, for 

“external” contacts) are taken into account once (the block is indeed considered, but the 

support whose virtual displacements are zero does not take part). Eq. (8) can be rearranged: 

      

      

1 1 1 1 2 2 2 2

1 1 2 2 1 1 1 1 1 1

( ) ( )

( ) ( ) ( )

0

b b b b b i b b b i b i b b b i

b i

b i b b i b b e b b b e b e b

i e e

           

          

 

  

G u M Q u r Q u r

T T Q u r T

     

    
 (9) 

For simplicity, introduce a new notation for the contact forces: instead of the two opposite 

forces Qb1i and Qb2i belonging to the same contact i, the contact force Qi is, by definition, the 

force acting on the block with the smaller index (the same can be done for the torque):  

1 2

1 2

: ;

: ;

i b i b i i

i b i b i i

  

  

Q Q Q Q

T T T T
 (10) 

For external contacts, the force and torque acting on the first entity of the contact is 

considered only, so Qe := Qb1e and Te := Tb1e. Using these notations, Eq. (9) can shortly be 

written as follows: 

 

      

      

1 1 1 2 2 2

1 2 1 1 1 1

( ) ( )

( ) ( ) ( )

0

b b b b i b b b i b b b i

b i

c b b e b b b e e b

c e e

         

       

 

  

G u M Q u r u r

T Q u r T

     

    
 (11) 

The virtual deformations (4) and (5) belonging to the contacts can now be recognized in (11), 

and hence  

 

   
( ) ( )

0b b b b c c c c

b c

        G u M Q d T θ     . (12) 

The first sum whose index b runs along the blocks expresses the external virtual work, done 

by the given loads on the chosen virtual displacements of the blocks. The second sum (with 

index c running along all internal and external contacts) is the internal virtual work, done by 

the contact forces and torques on those contact deformations that are caused by the chosen 

virtual block displacements.  

 

Equation (12) formulates the principle of virtual displacements for assemblies of rigid blocks:  

 

Theorem #1.: 

A force system composed by the (G, M) reduced loads acting on the xb block 

centres and the (Q, T) contact forces acting at the xc points is an equilibrium 

system if and only if for any arbitrary (u, ) virtual displacements of the blocks 

and corresponding (d, ) virtual contact deformations the sum of the external 

and internal virtual work is zero. 
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3.2 Mechanically admissible displacement systems:  

Heymanian and non-Heymanian displacements 
 

3.2.1 Mechanically admissible virtual displacements 

Rigid blocks cannot interpenetrate into each other, so the normal component of the relative 

translations at any point along a contact surface may only mean separation but no overlap, if 

the displacement system obeys the rigidity assumption of the blocks. Virtual displacement 

systems do not necessarily satisfy this no-penetration criterion, hence from now the special 

name “mechanically admissible” will be given to those virtual displacement systems which 

obey the no-penetration requirement. Denote the normal component of dc by dcN . Since the 

contacts do not resist tension, the following relation holds for every contact in the case of such 

displacement systems: 

0cN cN Q d  . (13) 

Virtual displacement systems (u, ) for which (13) is valid for all systems of no-tension 

contact forces and for all contacts, will be called, by definition, mechanically admissible 

virtual displacement systems. (Note that since (13) must hold for any system of no-tension 

contact forces, (13) means that in every point of the contact surfaces only separation or zero 

relative normal displacement – and no interpenetration – may occur.) 

 

The set of mechanically admissible virtual displacement systems can be separated into two 

subsets, i.e. Heymanian and non-Heymanian systems, according to whether a tangential 

component of the relative translation exists in any point of any contact. A displacement 

system is said to be Heymanian if the tangential components of the relative translations (dc) 

and the normal components of the relative rotation vectors (c) are zero at every point of 

every contact surface. Figure 6 shows three possibilities: (a) pure relative translation in the 

normal direction; (b) relative rotation about a corner; and (c) the combination of the two: 

separation in normal direction together with relative rotation. On the other hand, if a 

tangential component of dc or a normal component of c exists anywhere among the 

contacts in the structure, the displacement system is called non-Heymanian. As illustrated in 

Figure 7, such a contact deformation is not necessarily accompanied by frictional sliding: it 

may also occur while the two blocks are completely separate from each other. Figure 7. shows 

several different possibilities: relative translation without or together with contact separation 

(7a and 7b); relative rotation around an axis in the contact plane, accompanied by contact 

sliding (7c) and also by contact separation (7d); relative torsional rotation without (7e) or 

together with (7f) contact separation and sliding. 
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Figure 6. Figure 7. 

      Heymanian contact displacements                     Non-Heymanian contact displacements 

 

 

3.2.2 Work done on a mechanically admissible virtual displacement system 

 

Consider now the virtual external and internal work on the left side of Equation (12), and 

focus on the sign of the second term. If our analysis is restricted to Heymanian displacement 

systems only, then (13) ensures that for any arbitrary contact force system (obeying the no-

tension criterion) this second term cannot be negative. It is definitely positive if there exists at 

least one contact in which the xc contact point opens up in the chosen virtual displacement 

system; and it is zero if none of the contacts open up in the contact points. Consequently, the 

first term cannot be positive, independently of the exact details of the contact force system; 

and two possibilities may occur: 

 

(i) If an equilibrium force system can be found for which for any nonzero Heymanian virtual 

displacement system at least one contact point opens up, then the existence of the equilibrated 

force system proves that the external work is negative on any arbitrarily chosen mechanically 

admissible Heymanian system. (It is important to emphasize again that the locations of the 

“contact points” are not the geometric characteristic of the structure: these are the points 

where the chosen contact forces act.) 

 

(ii) However, if there exists any mechanically admissible Heymanian virtual displacement 

system for which the structure moves with none of the contact points opening up, then the 

work of the external forces done on  this displacement system is zero.  

 

An example for case (ii) was shown in Figure 3. Obviously, in any equilibrated force system 

the contact force between Blocks 1 and 2 must go through point P. Consider a mechanically 

admissible virtual displacement system which consists of zero displacements for Block 1, and 

an infinitesimally small rotation of Block 2 about point P. The internal virtual work is zero 

now, so in accordance to this, the external work should also be zero because of (12). Indeed, 

the small rotation of Block 2 causes a horizontal translation of its reference point, on which 

the work of the G2 vertical force is zero. (Note that there are several mechanically admissible 

displacement systems for which the lower or the upper contact opens up, and for these 

systems the external work is negative because of (12) and (13), but there also exists a system 

for which the external work is equal to zero.)  

 

(a) 

(d) (c) 

(b) 

(e) (f) 

(a) 

(b) 

(c) 
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It is important to emphasize that for non-Heymanian systems the internal virtual work may be 

either positive or negative, so no conclusion can be drawn about the sign of the external 

virtual work.  

 

The role of frictional resistance in the contacts should also be emphasized here. Note that 

without the existence of tangential force components and twisting moments the internal work 

cannot be negative for any mechanically admissible virtual displacement system. 

Consequently the external work cannot be positive, irrespective of whether the displacement 

system is Heymanian or non-Heymanian, if an equilibrium system of forces exists without 

friction. The existence of frictional components is what makes the sign of the total work 

ambiguous for non-Heymanian displacement systems.  

 

 

3.2.3 Mechanically admissible finite displacements 

 

In the forthcoming stability analysis in Section 3.3 finite displacements will be considered: 

the stability of an analysed state will be decided according to the sign of the work done by the 

external and internal forces along finite displacements which perturbate the actual position of 

the structure. The displacements will be finite in the sense that instead of the first-order 

approximations in (4) and (5), the contact deformations and the displacements of the 

characteristic points should be derived with the help of exact geometrical relations (i.e. points 

of rotating bodies move along circular paths), but they will be assumed to be sufficiently 

small not to cause the creation of new contacts between initially non-contacting elements. 

Crack opening or contact separation is, however, possible, and the contact force and torque 

which act at an existing contact in the analysed state, will either change position, or disappear 

in these cases. The two possibilities are illustrated in Figure 8. 

 

 

 

 

 

 

 

 

 

Figure 8.  

Contact opening possibilities: Case (a): Crack opening with the blocks remaining in contact, 

Case (b): Contact separation with complete detachment of the blocks. Thick black arrows 

represent the resultant contact force and torsion moment exerted by the right block on the left 

block. 

 

The (u, ) finite displace system is mechanically admissible if  

(a) the boundary points of the blocks do not penetrate into the interior of any other blocks, and  

(b) tangential or torsional sliding happens only if the corresponding friction force or torsion 

moment actually acting in the contact has reached its Coulomb-limit in the direction opposite 

to the contact deformation.  

Note that for mechanically admissible finite displacements the internal work in a sliding 

contact is always negative.  

 

(b) 

(a) 
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Finally, a system of finite displacements is called Heymanian or non-Heymanian according to 

whether its first-order approximation is Heymanian or non-Heymanian, respectively.  

 

 

3.2.4 The sign of the work done along mechanically admissible finite displacements 

 

External work 

It was shown in Section 3.2.2 that for those structures for which nonzero Heymanian virtual 

displacement systems exist only when at least one contact opens up (either in the way shown 

in Fig. 8a, or as illustrated in Fig. 8b), the existence of an equilibrated force system proves 

that the external work is negative on any arbitrarily chosen mechanically admissible 

Heymanian virtual system. Since the first order approximation of any mechanically 

admissible Heymanian finite displacement system is a virtual displacement system of this 

kind, for sufficiently small (but still finite) displacements the external work is negative. This 

conclusion will be very important for the forthcoming stability analysis.  

 

It was also pointed out that in cases when at least one mechanically admissible Heymanian 

virtual displacement system exists by which the structure moves without any contact opening 

up, the work of the external forces upon this infinitesimally small displacement system is 

zero. For such structures no conclusion can be drawn about the sign of the external work 

along finite displacements. Such a structure was shown in Figure 3. Obviously, for any 

sufficiently small (but finite) mechanically admissible rotation of Block 1 about its left or 

right bottom corner G1 produces negative work. But for Block 2 the situation is different: 

consider a finite displacement system which contains zero displacements for Block 1, and a 

small clockwise rotation of Block 2 about its lowest point, A. The reference point of Block 2 

starts to move along the horizontal tangent line of a circular path about the contact point. 

First-order approximation would give zero external work, but higher-order analysis reveals 

that the external work done on the chosen finite displacement system is positive.  

 

Internal work 

For mechanically admissible Heymanian systems of finite displacements the internal work 

(i.e. the work done by the existing internal forces and torques along the contact deformations) 

is always zero. A contact may (i) remain unchanged, (ii) open up in such a way that the 

boundary of the contact still remains in touch, or (iii) it may completely be opened. In the first 

case the contact force and torque work on zero deformations. In the second case (Fig. 8a) the 

contact force gets shifted (in a direction parallel to the contact plane) into a new position 

where the contact remains closed, so the internal work is zero again. In the third case (Fig. 8b) 

the contact force and torque disappears as soon as the contact starts to open up, so their work 

is zero.  

 

For mechanically admissible non-Heymanian systems of finite displacements the internal 

work of the contact forces and torques may be either negative or zero: negative for those 

contacts where sliding (translational or torsional) occurs, and zero for contacts which remain 

unchanged, are cracked, or which completely open up. Without a frictional force component 

and twisting moment, however, the internal work is exactly zero.  
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3.3 Stability analysis 
 

3.3.1 Definitions 

Stability is a concept that has been inspiring intense scientific debates for more than a century. 

There exists no general agreement on what to mean by ‘the’ stability of a process or of a state; 

Szebehely (1984), for instance, collected nearly 50 different concepts of stability that are 

applied in dynamics and celestial mechanics. Regarding the stability of a solid or a structure, 

the situation is similar: as emphasized for instance by Belytschko et al. (2000), there exist 

several different definitions for stability: “stability is a concept that depends on the observer 

and his objectives”. Consequently, every author has a significant freedom to settle his/her own 

definition for stability, but the concept must clearly and exactly be defined.  

 

In accordance to the usual engineering approach and particularly corresponding to the 

rigorous criteria of the theory presented by Parland (1995), in the present paper the following 

definitions are used:  

 

(1) Stable equilibrium state:  

The actual state of a masonry system is stable if there exists a continuous, finite-sized domain 

of mechanically admissible finite displacement systems (u, ) containing (u = 0,  = 0) 

as an interior point, for which the total work done by the actual external and internal forces on 

any (u, ) of the set is negative. 

 

(2) Unstable equilibrium state: 

The actual state of a masonry system is unstable if there exists any mechanically admissible 

finite displacement system (u, ) for which the total work done by the actual external and 

internal forces  on (u, ) is positive for any  < 1 multiplier.  

 

(3) Neutral equilibrium state: 

The actual state of a masonry system is neutral if it is not unstable, and there exists any 

mechanically admissible finite displacement system (u, ) for which that the total work 

done by the actual forces on (u, ) is zero for any  < 1 multiplier.  

 

(4) Critical equilibrium state: 

The actual state of a masonry system is critical if there exists any mechanically admissible 

virtual displacement system (u, ) for which the total virtual work of the actual external 

and internal forces is zero. (In this case higher-order analysis can reveal whether the actual 

state is stable, unstable or neutral.)  

 

 

3.3.2 The Static Theorem 

 

Assume now that for a given structure with given external loads, a force system was found 

which gives equilibrium with the loads, and obeys the no-tension criterion in the contacts. 

This “trial” force system may be very different from the forces actually acting in the structure, 

i.e. from the “real” force system. Though the trial force system is precisely known, the real 

forces are usually unknown (and not unique in a statically indeterminate structure like most 

masonry constructions). However, two characteristics of the real system can be recognised: 

first, the normal components of the contact forces are zero or compressional; and second, 

contact sliding (translational or rotational) is possible only if the distributed tangential contact 
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forces along the contact surface are opposite to the relative tangential translation in every 

point of the surface.  

 

The data of the trial force system contain the locations of the “contact points”, i.e. the points 

where the QcN compression forces act. Depending on whether there is any possibility to 

introduce a mechanically admissible Heymanian virtual displacement system in such a way 

that none of the contact points open up, the following two cases may occur: 

 If such a possibility does not exist (so at least one contact point always opens up, in every 

case), then the existence of the equilibrated trial force system ensures that for any arbitrary 

mechanically admissible Heymanian virtual displacement system the external work is 

negative. Since the first-order approximation of any finite displacements is a virtual 

displacement system, the external work is always negative for sufficiently small, 

mechanically admissible finite Heymanian systems. As discussed in Section 3.2.4, the internal 

work is zero for these finite displacements, so the total work is negative. Consequently, the 

structure is in a stable equilibrium state provided that non-Heymanian displacements are 

excluded from the analysis. On the other hand, no protection is given against non-Heymanian 

collapse modes.  

 If there exists any possibility to perform nonzero mechanically admissible Heymanian 

virtual displacements without contact opening (i.e. if the structure can slightly be moved 

while all the xc contact points remain closed), then along such an (infinitesimal) displacement 

system the external work is also zero, even though there may exist several other displacement 

systems for which the external work is negative. Consequently, no conclusions can be drawn 

concerning the sign of the external work along finite displacements, hence higher-order 

analysis is necessary to check whether Heymanian collapse modes exist. Even for Heymanian 

collapse modes, the state of the structure may be stable, unstable or neutral. 

 

The trial force system does not give any hint on whether tangential relative displacements 

happen in the contacts. Regarding the real forces, for a mechanically admissible finite non-

Heymanian system the internal work is always negative if sliding happens anywhere; but the 

sign of the sum of external and internal work cannot be predicted from the existence of a trial 

force system. So the structure may collapse according to a non-Heymanian collapse mode 

even if an equilibrium force system was found.  

 

To summarize, for structures satisfying the following assumptions:  

(a) the masonry units are infinitely rigid; 

(b) the masonry units are infinitely strong; 

(c) the joints transmit no tension, but resist arbitrary friction, 

the Safe Theorem can be stated as follows: 

 

Theorem #2.: 

If there exists any system of forces satisfying (a-c) being in equilibrium with the 

loads, and if there does not exist any mechanically admissible Heymanian virtual 

displacement system for which all contact points of this force system remain 

closed, then the structure is safe against collapse along any Heymanian 

displacements. 
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4. Discussion 
 

Section 2 contained three examples (Figs. 1, 2, and 3) in which Heyman’s classic static 

theorem failed. In the light of the results of Section 3, the reasons can now be explained:  

 The structures in Figures 1 and 2 are safe against Heymanian collapse modes: the existence 

of an equilibrated force system guarantees that without tangential relative displacements in 

the contacts, the structures will not collapse. Indeed, collapse happens in these cases with 

tangential relative displacements in certain contacts: non-Heymanian collapse occurs. (Note 

that the equilibrating force systems shown in Figures 1 and 2 contain frictional force 

components.) 

 The structure in Figure 3 is in a geometrical position for which, in order for it to have an 

equilibrated force system, the contact force between Blocks 1 and 2 must go through point P, 

so it is not possible to find any other xc contact point between the two blocks. A mechanically 

admissible Heymanian virtual displacement system can be found, namely the clockwise 

rotation of Block 2 about P, for which no contact point opens up. Hence, the existence of an 

equilibrium force system does not guarantee that the sign of the external work is negative. 

Indeed, higher-order considerations immediately reveal that the structure cannot be in a stable 

equilibrium state: the external work is positive for a finite clockwise rotation of Block 2.  

 

The two possible failure modes which may occur for frictional structures even if an 

equilibrated force system exists may be illustrated by two elementary examples, shown in 

Figures 9a and 9b:  

 

Boy with the Backpack 

The essence of the problem in Examples 1 and 2 is captured by the witty example proposed 

by P. Várkonyi (2012), which originated from Or (2007). As shown in Figure 9a, the 

“structure” consists of a rigid body in the shape of a sitting boy with a heavy backpack, 

supported by a brick-shaped rigid bench. The force G is the weight of the boy together with 

his backpack; its line of action is definitely outside the domain where the boy is supported 

from below. Figure 4a shows an equilibrium system in which both contact forces, F1 and F2, 

are compressional, having a frictional component. Although an equilibrium system exists, the 

body does not remain in the given position: it will fall over, rotating about point A. Collapse 

happens according to a non-Heymanian displacement system. 
 

(a)                                                                                  (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9. 

(a) Boy with the Backpack;  (b): Inverted Pyramid  
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Inverted Pyramid 

The structure shown in Figure 9b consists of a triangular block which is supported at a single 

point (A). Obviously, with suitable vertical contact force acting at A, an equilibrated force 

system is easy to find. However, as the total work done by the external and internal forces on 

a small finite rotation about A is positive, the triangular block will topple over about point A. 

 

Note that there is a basic difference between the two examples: in Fig. 9a the structure cannot 

be in equilibrium at all with the given geometry, while in Fig. 9b an equilibrium configuration 

exists though this equilibrium is unstable.  

 

Finally it is important to note the role of the frictional component of the contact forces and 

moments in the trial equilibrium system. These components play a fundamental role in the 

failure of Heyman’s Safe Theorem. It was pointed out at the end of Section 3.2.2 that without 

the existence of these frictional components the external work done on any mechanically 

admissible virtual (infinitesimally small) displacement system cannot be positive and 

consequently the external work is zero or negative also for any sufficiently small but finite 

mechanically admissible displacement system, regardless of whether they are Heymanian or 

non-Heymanian. This suggests an alternative formulation of the Safe Theorem:  

 

Theorem #3.: 

If there exists any system of forces satisfying the following conditions: 

(i) the masonry units are infinitely rigid; 

(ii) the masonry units are infinitely strong; 

(iii) the joints transmit no tension and no friction 

being in equilibrium with the loads, and if there does not exist any mechanically 

admissible virtual displacement system for which all contact points of this force 

system remain closed, then the structure is safe against collapse along any 

Heymanian or non-Heymanian displacements. 

Though this theorem is an interesting result from a theoretical point of view, it should be 

emphasized that it applies only if finding a force system which equilibrates the loads without 

containing any frictional components. Theorem #2, which is a refined formulation of 

Heyman’s original Safe Theorem, has wider validity.  
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