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Summary 
Crushing of mineral grains is a complex phenomenon encountered in many fields of engineering. It is 

influenced by effects on many levels: macroscopic stress state and void ratio; distribution of contact 

forces in the grain matrix on the meso-level, affected by grain size distribution and grain shape; the 

stress field inside the particles and their crushing strength on the micro-level. In turn, grain crushing 

leads to the evolution of the particle size distribution and leads to rearrangement of the grains. The 

Discrete Element Method offers new perspectives in modelling grain crushing. This report presents a 

model with macrograins consisting of randomly placed smaller micrograins. Single grain crushing 

tests are preformed to characterize the crushing strength of individual particles, and a parameter 

analysis is conducted to evaluate the effects of the most important model parameters. Then 

simulated high-pressure oedometer tests are carried out investigate the response of the assembly, 

especially the evolution of grain breakage and the connection between the macroscopic stress and 

void ratio. 

1 Introduction 

1.1 Overview of grain crushing 
The crushing of mineral grains is a complex phenomenon, encountered in many fields of engineering. 

To list a few: in material processing, the aim is mainly the comminution of larger grains to produce 

e.g. finer aggregates, cement, etc. In geotechnical engineering, it may be responsible for settlements 

and the reduction of shear resistance by suppressing dilatancy (e.g. under foundations or in railway 

track ballast), and measures are taken to prevent it. In petroleum engineering, it may cause 

densification and consequently the reduction of reservoir permeability. In this paper, the grain 

crushing will be examined from the geotechnical engineers’ point of view, through the behaviour in 

one-dimensional, oedometric compression tests. 

Since grain crushing has many different aspects, it has been studied by a large number of 

researchers, from many different points of view. (Nakata, Kato, Hyodo, Hyde, & Murata, 2001) give 

an overview of the main influence factors on grain crushing, as a result of thorough laboratory 

investigations on sands. According to them, grain crushing in one-dimensional compression – often 

also termed yielding – is affected by: 

 particle size and particle size distribution 

 particle shape and angularity 

 mineral composition and particle strength 

 initial void ratio 

The complexity of the problem lies in the interaction of these aspects, as will be outlined below. 

It was shown e.g. by (Chuhan, Kjeldstad, Bjørlykke, & Høeg, 2002) and (Guimaraes, Valdes, Palomino, 

& Santamarina, 2007) that the mineral composition strongly influences the grain’s strength against 

crushing, as well as the shape and type of fragments: if a grain contains crystals or inclusions with 

different stiffnesses, then these may lead to stress concentration, and their boundaries represent 
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inner flaws for crack initiation. This implies that fracture mechanical approaches could be justified for 

this level. A few steps have already been taken into this direction, e.g. (Silvani, Bonelli, & Désoyer, 

2007) , (McDowell & Bolton, 1998) and (Oldecop & Alonso, 2007). Furthermore, time-dependent 

processes, such as weathering and stress corrosion are also at play at this level. 

To calculate the internal stresses inside the grain is quite difficult: it is known that the grain shape 

influences the stress field (Nakata, Kato, Hyodo, Hyde, & Murata, 2001), (McDowell, Bolton, & 

Robertson, 1996). Usually, if the grains are not too elongated, the simplification as a sphere can be 

justified, and the corresponding analytical solutions may be applied. Such methods are presented 

e.g. in (Gundepudi, Sankar, Mecholsky, & Clupper, 1997), (Chau, Wei, Wong, & Yu, 2000),H (Russell, 

Wood, & Kikumoto, 2009), and (Russell & Wood, 2009). However, these methods also need some 

material properties, mainly Young’s modulus and Poisson’s ratio as input, and are very often 

sensitive to these values. A more precise analysis of the internal stresses may be achieved by the 

finite element method (FEM) for the grains, but requires substantially more computational effort. 

After the stress calculation, a failure criterion must be defined for the grains. Usually, the crushing 

strength is expressed in stress units, back-calculated from a simplified force-stress-relation given in 

Eq. (1). This approach will be presented below; however it neglects the effect of coordination 

number (as shown by (Gundepudi, Sankar, Mecholsky, & Clupper, 1997)), which has to be 

incorporated separately. Furthermore, the crushing strength of real grains was shown to be a 

probabilistic value and also shows a size effect. (McDowell & Bolton, 1998), (Nakata, Hyde, Hyodo, & 

Murata, 1999). Nevertheless, if the probabilistic nature of grain strength, the effect of multiple forces 

and the size effects are addressed, and assigned strength is consistent with the stress calculation 

method, the resulting failure criterion may be suitable for modelling grain breakage under complex 

conditions. To sum up the two opposite tendencies, larger grains exhibit a lower strength, but since 

their coordination number is usually higher – on the other hand, smaller grains are stronger, but their 

loading conditions facilitates breakage. The situation gets even more complicated if reversals occur: 

(Uygar & Doven, 2006) presented test result from cyclic triaxial tests on sand. They inferred that 

contact forces accumulate during load cycles even at lower stress levels. 

If a suitable failure criterion is set up, the forces acting on the grains have to be determined. It is well 

known that the forces in granular assemblies are transferred through so-called force chains, where 

some grains carry large contact forces, whereas others – even in close vicinity – may even be 

completely unloaded. Based on DEM simulations, (Marketos & Bolton, 2007) have shown that the 

distribution of contact forces related to the mean contact force is independent of the macroscopic 

stress level, and they observed a linearly increasing tendency for the contact force magnitudes with 

grain diameter, consistent with other researchers’ results. This implies that larger grains form the 

main skeleton for the force chains, and experience higher contact forces, but also carry more 

contacts than smaller grains. The ratio of “active” and “passive” grains was shown to depend on the 

range of void ratios emax-emin (Nakata, Kato, Hyodo, Hyde, & Murata, 2001), a property related to the 

grain size distribution and to particle shape. The initial void ratio also plays a significant role, since at 

higher void ratios the same macroscopic stress is carried by fewer grains, leading to higher contact 

forces. 

As fragments are produced during grain breakage, the grain size distribution evolves, and it was 

found by many researchers that the finer fractions increase at the fastest rate (Chuhan, Kjeldstad, 

Bjørlykke, & Høeg, 2002). (Nakata, Hyodo, Hyde, Kato, & Murata, 2001) also found that different 
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initial curves approach a common limiting grading curve, where no crushing occurs anymore. 

(McDowell, Bolton, & Robertson, 1996) and (McDowell & Bolton, 1998) suggested that the evolution 

shifts the grading curve towards a self-similar, fractal distribution. Accordingly, if a comminution limit 

exists for the considered material, then a limiting grading curve also exists. 

A useful tool for treating grading curves is the so-called grading entropy concept, where similar 

grading curves can be treated together. It was successfully applied in various grading-related 

problems, such as minimal and maximal void ratio, stability of granular filters and the grain skeleton, 

etc. Using this, (Lőrincz, Gálos, Trang, Rajkai, Fityus, & Telekes, 2005) and (Lőrincz, Kárpáti, Trang, 

Imre, & Fityus, 2011) have shown that sands with various initial grading curves converge towards a 

common point in the entropy diagram, with the most stable grading and a maximal grain size 

diversity (called relative base entropy and entropy increment). The speed of convergence depends 

on the strength of the individual grains comprising the hardness of the grain skeleton.  

As can be seen from the above, the crushing of grains in an ensemble is a truly multi-level problem. 

At macro-level, there is the macroscopic stress state, the void ratio, and the (evolving) grading curve. 

On the meso-level, they influence the distribution of contact forces as force chains, the coordination 

numbers, and the breakage of individual grains. The breakage of single grains depends on micro-level 

properties such as grain shape, mineral composition, inner stress state and fracture toughness. 

1.2 DEM approaches to particle crushing 
The Discrete Element Method (DEM) has become an established tool to investigate multiple-body 

and contact problems, which are discontinuous in their nature, and cannot be treated analytically. In 

particular, it can be used to examine phenomena which are difficult or impossible to analyze in 

physical experiments, such as force chains in granular media. Since most DEM codes use basic 

elements which are rigid, in the context of grain crushing, they are suitable to model the relations 

between the macro- and meso-levels described above, but can also be applied to simulate the micro-

level behaviour of single grains. An overview of grain crushing concepts in DEM is be given below. 

Modelling the crushing of particles in DEM involves numerous aspects, which cannot be fulfilled 

equally well with today’s computational resources and available programs. Because of this, three 

basically different concepts have been established by now, each containing different benefits and 

drawbacks. An overview of these three approaches is given in Table 1. Of course, the list of pros and 

contras is not complete; it only reflects the most important aspects in the view of the authors. 

The aspects to be considered can be classified roughly in 2 groups: physical considerations and 

computational aspects. 

The first approach uses a smaller number of elementary units (e.g. spheres) for the grain ensemble, 

usually one sphere stands for one grain, or the grain is made up of heavily overlapping spheres 

forming a rigid body (clump). First, a previously defined failure criterion is checked, which determines 

if the particle breaks under the current arrangement of contact forces. The failure criterion usually 

involves the largest contact force Fmax, and sets up an analytical connection between contact force 

and the inner stress field. Other variables may be the coordination number, quantities relating to 

particle shape; a random strength may also be defined for each particle. If the failure criterion is met, 

the grain is erased and subsequently replaced by fragments, i.e. smaller, but similar grains. The 

number and position of the fragments is pre-defined. This is one of the critical aspects in this 

approach, since the fragments should fit into the volume occupied by the broken grain without a 

large volume loss, and without inducing large stresses due to overlap. An “artificial” size limit may be 
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imposed on the crushing process.  This approach was put to use e.g. in (Lobo-Guerrero, Vallejo, & 

Vesga, 2006), (Lobo-Guerrero & Vallejo, Discrete element method analysis of railtrack ballast 

degradation during cyclic loading, 2006), and (Marketos & Bolton, Compaction bands simulated in 

Discrete Element Models, 2009). 

The second approach makes use of crushable macrograins, built up from a large number of 

elementary units (called micrograins in this paper) connected by breakable bonds. The failure 

criterion is checked implicitly, since it is “included” in the stress check of the bonds. Similarly, no rule 

has to be defined for the fracture process, since the fragments develop with the breakage of the 

bonds. The size of the macrograins inherently sets a limit on the comminution process. This approach 

was used e.g. by (Whittles, Kingman, Lowndes, & Jackson, 2006), (Refahi, Mohandesi, & Rezai, 

2010)(Oquendo, Muñoz, & Lizcano, 2009), (McDowell & Harireche, 2002), (McDowell & Harireche, 

2002), (Cheng, Nakata, & Bolton, Discrete element simulation of crushable soil, 2003), (Cheng, 

Bolton, & Nakata, 2004). A more detailed overview of these models will be given in Section 1.4. 

The third approach may be considered the most advanced, but computationally the most demanding 

one. It comprises a coupled DEM-FEM model, where the contact problem between the grains is 

calculated using DEM, and the internal stresses inside the particles are calculated using a continuum 

mechanical approach (Finite Element Method – FEM). Here, the connection between contact forces 

and internal stresses is no longer analytical, and the fracture may develop along “yielding” points 

inside the grain. Investigations based on this approach were presented e.g. by (Liu, Kou, & Lindqvist, 

2005), (Kou, Liu, Lindqvist, Tang, & Xu, 2001), and (Bagherzadeh, Mirghasemi, & Mohammadi, 2011). 

A common feature of these models is that they are all 2D, showing the high complexity of such 

models. 

1. Table: Overview of grain crushing concepts in DEM 

Approach Replacement of 
broken grains 

Fracturing of 
macrograins 

Coupled DEM + FEM 

Internal stresses omitted/analytical as contact and bond 
forces 

FEM stress field 
analysis 

Failure criterion defined in advance, 
with considerable 

simplifications, 
crushing sensitive to its 

choice 

inherent, defined by 
bond properties 

defined as a general, 
stress-state based 

failure criterion 

Parameters controlling 
breakage 

defined “externally”, 
e.g. max. contact 

force, coordination 
number 

micromechanical 
parameters, e.g. 

contact stiffness, bond 
stiffness and strength 

usual “continuum-
mechanical” 

parameters, e.g. 
compressive and 
tensile strength 

Issues in the fracture 
process 

large volume loss and 
implosion, or 

high contact stresses 

- - 

Fractured shapes usually rounded, 
following given rule 

realistic realistic 

Comminution limit none, may be set size of the micrograins size of finite elements 

Void ratio, voids realistic, 
only between grains 

very high, between 
and inside the grains 

realistic, 
only between grains 

Element number initially low, increasing high, steady very high, steady 
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From the 3 approaches presented, the replacement requires the most assumptions to be made 

about the stress state and failure criterion. The other two do not require such assumptions to be 

made, and the failure criterion is inherent as bond strength (macrograin concept), or may be defined 

in terms of stresses. Furthermore, they also allow damaged states prior to fracture. 

Similarly, no rule has to be set for the fracture process; the fragments assume realistic shapes and fit 

smoothly into their surroundings. In contrast, a replacement rule has to be defined for the first 

approach, and a balance between volume loss and contact stresses caused by the fragments has to 

be found. This trade-off arises due to the following geometrical problem. If the rounded fragments 

had the same volume as the broken grain, they could only be arranged in a greater volume, causing 

high contact stresses. If they are to fit into the original space, this is only possible if some volume loss 

is allowed, but this introduces unrealistic voids which affect the compression when grain 

rearrangement occurs. It has to be considered though, that the macrograins made up of micrograins 

already contain a large internal void volume (see 2. Table 2).  

Beside the above drawbacks, the replacement approach imposes no limit on the comminution of the 

grains, which is a significant limitation for the macrograin approach.  

Furthermore, due to the small number of elements used, the replacement approach enables larger 

models to be run, and offers faster calculation at the start. However, as grain crushing commences, 

the element number can increase rapidly without a comminution limit. As for the macrograin 

approach, the element number is high already at the start, but stays constant during the calculation, 

which enables the optimization of memory allocation and other computational aspects. The coupled 

DEM-FEM model is the most resources-intensive, since each grain is divided into a large number of 

finite elements, with the FEM calculation for each grain conducted separately. 

A general shortcoming of all of these approaches is that they cannot handle the formation of fine 

dust, as observed in reality. Since these very fine particles do not influence the behaviour of the 

ensemble significantly, they may be neglected as separate particles, but up to ≈4% of the grain 

volume may be turned into dust (Guimaraes, Valdes, Palomino, & Santamarina, 2007), which is still a 

significant quantity. On the other hand, to use micrograins at the comminution limit – for silica sands 

lying in the μm-range (Kendall, 1978) – is out of the scope of possibilities given today’s computational 

power. 

1.3 Short overview of PFC3D 
The program used for the simulations is PFC3D v.3.10 from Itasca Consulting Group Inc. The main 

features – with respect to the current research – are summarized below. 

PFC3D is a discrete element method (DEM) based computer code, which is able to simulate the 

mechanical interaction of several discrete bodies in 3 dimensions. The elementary “bodies” used in 

the program are spheres, which can be combined to complex shapes using deformable bonds in the 

contact zones, or via “clumping”, which means a perfectly rigid composition of the (usually 

overlapping) spheres forming the desired particle shape. 

The interaction is simulated by solving the Newtonian motion equations in 3D, both translation and 

rotation are possible. The solution of the motion equations is calculated with the method of central 

differences, an explicit time integration scheme. A single calculation cycle consists of two main 

phases: the first, motion calculation phase is followed by the force-displacement calculation phase.  

In the motion calculation phase, the initial configuration at the beginning of the current timestep 

contains the positions and velocities of the bodies, as well as the forces acting on them. The forces 

may be body forces (e.g. gravity), prescribed forces/moments, and contact forces resulting from the 
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previous calculation cycle. The configuration at the end of the timestep is then calculated from the 

motion equations, this concludes the motion calculation phase. 

In the following force/displacement calculation phase, new contacts are detected, as well as existing 

contacts are updated. The calculation of the contact forces is done by the so-called “soft contact” 

model. Here, the spheres themselves are considered rigid, and their deformation is “localized” into 

the contacts as overlap, tangential relative translation and relative rotation. The contact forces and 

stiffness are calculated from the assigned contact constitutive model, depending on the actual 

deformation of the contact. In the force/displacement calculation phase, the overlap increment is 

calculated for each contact, and the contact forces are updated, based on the (tangent) stiffness 

modulus of the contact. For each contact, the deformation increment is divided into normal and  

shear components, and the contact force increment is calculated from the corresponding (normal or 

shear) stiffness modulus. (The conceptual contact model is shown below, see 1. Fig.) 

In the current research, the nonlinear, stiffening Hertz-Mindlin contact model was used. (Itasca, 

2003) The Hertz-Mindlin contact is only active in compression, and the resulting contact stiffnesses 

(both normal and shear) are a function of the two spheres’ shear moduli and Poisson’s ratios, the 

radii, and the actual overlap. The shear force in a contact without a parallel bond is limited by 

Coulomb’s law of friction. 

Complex bodies can be created by bonding the spheres together. In the current project, so-called 

parallel bonds were used. These parallel bonds may be imagined as cementation between 

sandgrains. They provide additional stiffness to the contact (i.e. act “parallel” to the Hertz-Mindlin 

contact – hence the name), as well as normal (both tensile and compressive), bending, shear and 

torsional strength. The “cross-section” of a parallel bond is circular, with the radius Rpb determined 

by the radius ratio αrad, and the radius of the smaller sphere:  Rpb=αrad·min(R1,R2) – with R1 and R2 

being the radii of the joined spheres. The bond’s length is equal to the distance between the centres 

of the joined spheres. The shear and normal stresses are calculated according to the elastic beam 

theory, and they are compared with the defined shear and normal strengths. (The failure criteria are 

uncoupled; the failure surface is a rectangle in the σ-τ-coordinate system.) If any stress in the parallel 

bond reaches the corresponding strength, the bond fails, it is erased, and the connected spheres 

subsequently act as unbonded. Another important feature of parallel bonds is that they carry zero 

stress in the configuration they are generated – i.e. a Hertz contact force may already be present in 

the contact.  

Another bond type may also be used, the contact bond. A contact bond can only transmit normal and 

shear force, but no moments, and it’s stiffness cannot be adjusted in the program. 

Combining groups of spheres into clumps means that their relative positions are fixed, and the group 

acts as a single rigid body with deformations limited to the outer boundaries. This feature is 

especially helpful to protect the macrograins during sedimentation or other temporary phases. 

An important feature of the Hertz-Mindlin contact model in PFC3D 3.1 is that the walls are treated 

unlimitedly stiff (i.e. only the ball properties are considered for the stiffness of the ball-wall contact). 



9 
 

 
1. Fig.: Conceptual model of the grain contacts in this research 

 

1.4 Recent developments and relations to the current model 
After a short overview of the DEM program adopted in the current research, some recent 

developments and results regarding DEM simulation of oedometric compression tests and grain 

crushing based on the fracturing macrograins approach will be presented. 

(Oquendo, Muñoz, & Lizcano, 2009) presented a simulated oedometric test on dry Guamo sand. They 

used their own DEM code which involved Hertz contacts between the grains. By varying the 

microparameters, they found a power-law connection between these and Bauer’s macroscopic 

compression law (Bauer, 1995) for the investigated granulometry. Although no grain crushing was 

involved, they were able to reproduce the first part of the normal compression line for sand. 

(Whittles, Kingman, Lowndes, & Jackson, 2006) investigated the crushing process of cylindrical rock 

specimen, focusing on the strain rate and crack propagation in the DEM simulations with parallel-

bonded specimen. They used the linear contact model, and applied a normal distribution to the bond 

strengths. 

(Refahi, Mohandesi, & Rezai, 2010) modelled the particle crushing process in a crusher. In connection 

with laboratory experiments, DEM and FLAC calculations were carried out on the spherical and cubic 

specimen. The parallel-bonded specimen in PFC3D contained more than 30000 micrograins, with a 

linear contact force-displacement law. 

In their 2 papers, (McDowell & Harireche, 2002), (McDowell & Harireche, 2002) presented a single 

macrograin crushing test, and used these macrograins in a model for oedometric compression. They 

composed macrograins from uniform spheres in a regular (hexagonal close) packing, by bonding 

them together with contact bonds, and applied a linear contact force-displacement rule. To simulate 

inner flaws of the material, they randomly removed 0-25% of the micrograins, creating holes inside 

the macrograin. They showed that these macrograins exhibit a direction-dependent crushing 

strength, but the size effect is opposite than physically observed: larger grains tend to be stronger. By 

creating an ensemble of these macrograins, they are able to reproduce the typical e-lgσ plot with 

grain crushing, and find that the yielding point is proportional to the crushing strength of the grains. 

(Cheng, Nakata, & Bolton, 2003) and (Cheng, Bolton, & Nakata, 2004) used similar macrograins to 

those by McDowell & Harireche: hexagonal packing and subsequently deleting a certain percentage 

of the micrograins. The preliminary results showed that no dynamic effects are likely to occur until 

very high strain rates. They simulated triaxial tests with different stress paths, starting from isotropic 
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compression. The results were evaluated in the framework of the Modified Cam Clay model, 

emphasising that the normality assumption for plastic strains was found not to hold. 

 

In the current research, the Hertz-Mindlin contact model was adopted, which exhibits a nonlinear, 

stiffening character. This is perceived to be superior to the linear contact model for high contact 

forces. 

Furthermore, the inner texture and flaws of a grain are simulated by using a range of micrograin 

diameters and applying a normal distribution to the bond strengths. The macrograins of (McDowell & 

Harireche, 2002)  and (Cheng, Nakata, & Bolton, 2003) nevertheless showed a proper range of 

crushing strengths, but this was achieved by deleting some micrograins, which add inner voids to the 

macrograins. Their hexagonal close packing – when undisturbed – exhibits void ratio of ≈0.35, which 

is the lowest achievable value for equal spheres. When these macrograins are crushed, the inner 

voids turn to outer voids, which is hard to account for. On the other hand, the regular packing is lost 

during relative movements, leading to an increase in achievable lowest void ratio. With the current 

approach, the eventual “crystallization” of the macrograin due to a regular packing and uniform 

diameters can be avoided. Since the packing is irregular, but still compact, it may serve to identify the 

point until the compression curve is valid. 

1.5 Statistics of particle strength 
The resistance of a single grain against crushing forces depends on a number of factors. From the 

material side, there are e.g. mineral composition, size and distribution of inner flaws, state of 

weathering, and other factors determining the fabric of a mineral grain. From the load side, the 

number of contacts and the orientation of the acting forces are most important. (Guimaraes, Valdes, 

Palomino, & Santamarina, 2007), (Chuhan, Kjeldstad, Bjørlykke, & Høeg, 2002), (Nakata, Hyodo, 

Hyde, Kato, & Murata, 2001) 

For brittle mineral grains, the main failure mode is splitting, caused by the splitting tensile stresses in 

the contact zone reaching the tensile strength of the material. (Russell & Wood, 2009) Since the 

calculation of the stress state inside the particle holds considerable uncertainties and is rather hard 

to carry out , usually simplified forms are put to use. 

 
2. Fig.: Concept of a single grain crushing test 

For calculating the tensile strength of a grain from a crushing test, (Jaeger, 1967) proposed the 

formula 

         
   (1) 

It is very similar to the tensile strength measurement by the Brazilian test, which also measures the 

tensile strength of rock indirectly. A single grain crushing test arrangement is shown in 2. Fig. 

d 

F 
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(Weibull, 1951) proposed a function for the survival probability of a beam in tension – based on the 

“weakest link”-theory –,  depending on material strength variability and member volume: 
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)
 
(
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]  (2) 

Since splitting occurs due to tensile material failure in the contact zone, the Weibull distribution was 

shown to apply also for the crushing strength of mineral grains. The right-hand side of Eq. (2) already 

contains the modification for the grain diameter d. For a grain with diameter d, Eq. (2) yields the 

probability that the grain remains intact (not crushed) when subjected to a force F= σ·d2. Similarly, in 

a uniform ensemble of grains with diameter d, all subjected uniformly to contact forces F= σ·d2, the 

percentage of surviving grains is predicted by Eq. (2). 

The material constants in Eq. (2) are the characteristic strength σ0 for a given reference diameter d0, 

and the Weibull-modulus m. σ0 is defined as the stress at which 37% of the grains with d0 survive, 

and m describes the variability of the grain strength. A higher m means less variability with the 

individual grain strengths lying in a narrower range, and vice versa, see Fig. (next). The mean strength 

for an ensemble of grains with d0 relates to σ0 and m as follows: σmean(d0)= σ0·Γ(1+1/m), where Γ is the 

Euler-gamma function. (McDowell, Statistics of soil particle strength, 2001) In the range of m=1.2-5.0, 

the function Γ(1+1/m) assumes values between ≈0.88-0.94. Normalized plots (with σ0=1) for the 

survival probability function are shown in 3. Fig., for different values of m. 

 
3. Fig.: Normalized survival probability plots for different values of m 

It shall be noted that Eq. (2) contains a pronounced size effect. The distribution of grain strengths for 
arbitrary grain sizes (the derivative of the survival probability function) becomes a surface: 

 
4. Fig.: Distribution of grain strengths σ for arbitrary d, normalized with respect to σ0 and d0 
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4. Fig.4. reflects that the larger grains are expected to be weaker, since they are more likely to 
contain larger inner flaws. In contrast, the size of inner flaws decreases with crushing; and the small 
grains exhibit a larger characteristic strength. However, it was shown(Nakata, Hyde, Hyodo, & 
Murata, 1999) that the size effect depends largely on the inner texture of the grain, and real grains 
do not always follow the “rule” given in (2). Also, as noted by (Duxbury, Kim, & Leath, 1994), the size 
effect is quite weak, and can be determined reliably only over a large sample size range. 
The method for estimating the parameters of the Weibull distribution, along with the reliability of 
the results, are dealt with in (McDowell, Statistics of soil particle strength, 2001). Reported Weibull 
moduli range between m≈1.3-3.5 (McDowell, Statistics of soil particle strength, 2001) and m≈1.2-3.1 
(Nakata, Kato, Hyodo, Hyde, & Murata, 2001). For m≈3-4, 30 tests suffice to estimate the mean 
strength to be within 10-15% of the true mean with a confidence level of 95%. 
 
In a broader context, (Duxbury, Kim, & Leath, 1994) have presented that besides the Weibull-
distribution, a modified form of the Gumbel-distribution can also be derived for the fracture statistics 
on sound micromechanical and mathematical foundations. If the flaws are “placed” into grains at 
random positions, e.g. by deleting bonds or micrograins – as is usual for DEM simulations based on 
the fracturing macrograins concept –, then the crack size distribution will exhibit an exponential tail 
(relating to the modified Gumbel-distribution of strength). On the other hand, dynamic crack growth 
models can predict both algebraic-tailed and exponential-tailed crack populations. Then an algebraic 
flaw population will lead to the Weibull-distribution of grain strength.  
To choose between the two models would require simulations over several orders of magnitude in 
sample size, which is unfeasible with today’s computational capacities. This means that the size 
effect is quite weak over small grain size ranges. Choosing the “wrong” model does not cause 
significant errors in the computations, which makes the use of the Weibull-distribution a valid choice 
in the practical cases. 

2 Macrograin generation 
This section contains an overview of the macrograin geometry used in the current research.  

The macrograins are composed of many smaller micrograins, which are bonded together by parallel 

bonds. The macrograins are shaped to 3 different sizes for the oedometer tests: diameters of 2mm, 

3mm and 4mm are generated. The procedure is based on the bonded specimen generation 

procedure available as a program module in PFC3D; it consists of the following steps: 

1. A box container (cube) is filled with micrograins (spheres) in an irregular, dense packing, 
under zero friction. The diameters of the micrograins assume a predefined range: they 
uniformly cover a range of dmin to 1,5·dmin (radius ratio = 1,5), with a mean diameter of 
dmean=0,5mm. The micrograin-to-micrograin contacts have a stiffness modulus of 10 MPa. 
(The number of particles is determined such that the resulting void ratio should be 0.54 at 
their desired size. Then the particles are placed inside the container, at random positions, 
with half of their final size to facilitate placing them without overlaps. Then their size is 
increased to the final value and the ensemble is equilibrated. The resulting state is in an 
arbitrary – not isotropic – stress state, and the void ratio will be only approximately 0.54) 

2. In order to ensure proper contacts, the micrograins are compressed to an isotropic stress of 
1 kPa.  
(The container walls are moved until the stress in all 3 directions is the same. This ensures 
that there are no unloaded/loose regions, or no high stresses remain due to high 
confinement – i.e. a low locked-in stress is reached. If loose regions were present, then they 
could not be bonded together properly. Conversely, if high contact forces are present during 
bond installation, then a considerable amount of bond strength is “used up” to carry the 
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contact forces after the confinement is released – e.g. in the oedometer and in the single 
grain crushing tests.) 

3. Prior to adding the parallel bonds, the so-called floaters are eliminated. Floaters are those 
“loose” micrograins which have less than 3 contacts. Their radii are increased until they reach 
a stable position. 
(In the practical cases, the increase in radius is not large, and the resulting radii will still show 
the initial uniform distribution – within the tolerance for a valid realization.) 

4. Parallel bonds are added to the prepared specimen. 
(The parallel bonds don’t carry forces in the position they are installed. Later, when the 
confining walls are removed, they keep the micrograins from falling apart. This imposes 
locked-in bond forces which result in a stress state opposite to the isotropic compression of 
step 2. This is the reason why the level of locked-in stress shall be low.) 

5. The specimen is trimmed to the desired shape: with the diameter of the spherical 
macrograin prescribed (2-3-4 mm), the micrograins not contained completely inside this 
envelope are removed. (The sphere’s centre coincides with the centre of the container box.) 

6. The micrograin geometry data (centre coordinates, radii) are exported to an external file, for 
later use in the oedometer and in the single macrograin crushing tests. 

Steps 1-4 are „Itasca standard”, as delivered in the PFC3D module, while steps 5-6 are the addition of 
the authors. A detailed description of steps 1-4 can be found in (Itasca, 2003). The macrograin 
generation steps are shown in 5. Fig.: 

 
5. Fig.: Macrograin generation steps 

It shall be noted that the micrograin stiffness in step 1 has only a small effect on the later grain 
behaviour; it only has to be high enough to keep the contact deformations sufficiently low at the 
induced isotropic stress level. Furthermore, the parallel bond properties (stiffness and strength) in 
step 4 are later of no importance in the oedometer model, since the bonds are stress-free in the last 
steps when the micrograin arrangement is saved. 
The round envelope shape does not cause unrealistic behaviour, because the surface of the 
macrograin still remains rough. Furthermore, large rotations cannot develop within the oedometer 
without large relative displacements, which can occur only after grain breakage in the locked-in 
ensemble. The geometrical properties of the macrograins are summarized in Table A: 

2. Table: Geometrical properties of the macrograins 

 
normal resolution 

Macrograin  
diameter 

Dmacro 
(mm) 

Micrograin  
diameter 

dmicro 
(mm) 

Mean 
micrograin  
diameter 

dmean 
(mm) 

Number of  
micrograins 

Total volume 
of micrograins 

Vmicro 
(mm3) 

Number of  
contacts/ 

bonds 

Measured 
core void 

ratio  
ecore 

(-) 

2.0 0.4 - 0.6 0.5 48 2.584 169/84 0.588 

3.0 0.4 - 0.6 0.5 155 8.807 691/341 0.581 

4.0 0.4 - 0.6 0.5 365 21.707 1782/881 0.556 

       

 1. 2. 4. 5. 6. 
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4x resolution 

Macrograin  
diameter 

Dmacro 
(mm) 

Micrograin  
diameter 

dmicro 
(mm) 

Mean 
micrograin  
diameter 

dmean 
(mm) 

Number of  
micrograins 

Total volume 
of micrograins 

Vmicro 
(mm3) 

Number of  
contacts/ 

bonds 

Measured 
core void 

ratio  
ecore 

(-) 

2.0 0.252 - 0.378 0.315 120 1.631 523/252 0.611 

3.0 0.252 - 0.378 0.315 468 7.032 2237/1136 0.553 

4.0 0.252 - 0.378 0.315 1183 18.142 6261/3040 0.555 

 

Compared to the normal resolution, the micrograin volume is 1/4, thus the diameter is 
multiplied by (1/4)1/3 

       

 
2x resolution 

Macrograin  
diameter 

Dmacro 
(mm) 

Micrograin  
diameter 

dmicro 
(mm) 

Mean 
micrograin  
diameter 

dmean 
(mm) 

Number of  
micrograins 

Total volume 
of micrograins 

Vmicro 
(mm3) 

Number of  
contacts/ 

bonds 

Measured 
core void 

ratio  
ecore 

(-) 

4.0 0.317 - 0.476 0.397 553 16.878 2796/1358 0.554 

 

Compared to the normal resolution, the micrograin volume is 1/2, thus the diameter is 
multiplied by (1/2)1/3 

       

 
micrograin diameter - high : low = 1 : 1 

Macrograin  
diameter 

Dmacro 
(mm) 

Micrograin  
diameter 

dmicro 
(mm) 

Mean 
micrograin  
diameter 

dmean 
(mm) 

Number of  
micrograins 

Total volume 
of micrograins 

Vmicro 
(mm3) 

Number of  
contacts/ 

bonds 

Measured 
core void 

ratio  
ecore 

(-) 

4.0 0.50 - 0.50 0.50 283 16.706 1086/651 0.596 

 
All micrograins have the same diameter. 

       

 
micrograin diameter - high : low = 3 : 1 

Macrograin  
diameter 

Dmacro 
(mm) 

Micrograin  
diameter 

dmicro 
(mm) 

Mean 
micrograin  
diameter 

dmean 
(mm) 

Number of  
micrograins 

Total volume 
of micrograins 

Vmicro 
(mm3) 

Number of  
contacts/ 

bonds 

Measured 
core void 

ratio  
ecore 

(-) 

4.0 0.27 - 0.75 0.50 281 16.202 1023/636 0.529 

3 Single macrograin crushing tests 

3.1 Overview 
In order to get an insight into the crushing behaviour of the single micrograins, parameter analysis 

test series were conducted for the most important grain parameters. The properties of the 

reference-configuration are given in 3. Table. (Apart from the geometrical properties already given in 

2. Table) 
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3. Table:  Summary of the reference macrograin's properties 

Micrograins properties 

dmicro [mm] Density 
ρ [g/cm3] 

Young’s modulus 
E [GPa] 

Poisson’s ratio 
ν [-] 

Friction coefficient 
[-] 

0.4-0.6 2.65 90 0.08 0.55 ≈ 29o 

Parallel bond properties 

Normal and shear stiffness 
Kpb [GPa/mm] 

Normal and shear strength 
σpb [MPa] 

Radius ratio  
αrad [-] 

475 465 0.5 

The micrograin contact constitutive model is the Hertz-Mindlin model, with the input parameters E 

and ν taken from (Russell, Wood, & Kikumoto, Crushing of particles in idealised granular assemblies). 

The friction coefficient was adopted after (Ni, Powrie, Zhang, & Harkness, 2000). 

Since the load bearing capacity of a parallel bond is calculated as the elastic bearing capacity of a 

cylindrical beam, the strength σpb and the radius ratio αrad are interdependent. In the current model, 

the radius ratio was – somewhat arbitrarily – set to αrad=0.5. 

A novel feature is the introduction of fracture mechanical aspects. The strain energy release rate G 

(the energy necessary to tear apart atomic bonds and create new crack surfaces in a material) can be 

incorporated such that it matches the energy stored in a parallel bond at its failure. (McDowell, 

Bolton, & Robertson, 1996) reported G≈50 J/m2 for silicates. For tension (mode 1 failure), the bond 

stiffness Kpb was approximated such that the potential energy of the parallel bond Πpb was equal to  

            (3) 

where Anew is the sum of new surfaces created by breaking the parallel bond. This yields 

    
 

 

    
       

 

      
  (4) 

 

A single crushing test consisted of the following steps: 

1. Applying a random spatial rotation to the macrograin, defined by 2 random rotation angles 

α0 and β0. (The grain is first rotated around the vertical “z” axis by α0, and then around the 

already rotated, horizontal “x” axis by β 0. The rotation angles are picked randomly from the 

ranges α0є [-π, π], β 0є [-π, π]) 

2. Dropping the grain onto the base platen and let it reach a stable position. (The grain is 

treated like a rigid body – clump – in order to prevent premature bond failure.) The spatial 

direction, defined by the angles α and β is tracked until equilibrium. α and β relate to α0 and 

β0, but their values are somewhat different, due to the grain rolling into its stable position. 

3. Placing the top platen. The top platen is positioned such that it touches upon the uppermost 

micrograin. 

4. Grain crushing process with the following parameters: 

10-8 s timestep x 2·106 cycles = 0.02 s compression time; 

strain rates:  Dmacro=4mm → 10 mm/s  

  Dmacro=3mm → 7.5 mm/s 

  Dmacro=2mm → 5 mm/s 

compressive strain ≈ 5% 

A crushing test was accepted to be valid if the following criteria were met: 

 pronounced force peak present, 

 prominent post-peak drop in compressive force 

 ratio of broken bonds starting from 0, following the force diagram 
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A typical force-displacement diagram is presented in 6. Fig., with the force (black) and the ratio of 

broken bonds (red) plotted against the compressive strain: 

 
6. Fig.: Force-displacement diagram of a single macrograin crushing test, with ratio of broken bonds 

At the beginning of crushing process, the “sawtooths” local peaks on the force diagram mark minor 

damage to the grain: asperity breakage, where outcropping edges and corners are broken. (The 

current model cannot reproduce the lightest, abrasion-type damage.) The main fracture appears at 

the force peak, where the microcracks coalesce into the larger main fracture, also visible as a jump in 

the ratio of broken bonds. The sudden drop after the peak force reflects a rather brittle, splitting-

type failure. However, the remnants are also able to carry some load, this is visible as the slightly 

increasing part after the post-peak drop. 

For evaluating the grain strengths and the survival probabilities (Section 1.5), the peak force was 

extracted for each valid test. 

The stiffness of a grain may be approximated as a tangent to the force diagram’s rising part. The 

results showed high variability of the stiffnesses, similarly to the variability of strengths described in 

Section 3.3. 

3.2 Validation of the crushing process 
In real grain crushing experiments, the displacement rate of the loading platen is much smaller than 

that used in the current simulations, approximately 0.01 mm/min (in: (Nakata, Hyde, Hyodo, & 

Murata, 1999)) to 0.01mm/s (in: (Arslan, Baykal, & Sture)). Also, the explicit time integration scheme 

of PFC3D requires smaller timesteps for more precise results.  

In contrast, the vast amount of computational time required to run the test series makes a larger 

strain rate and longer timesteps more favourable. 
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Since the force-displacement laws for the micrograins and the parallel bonds are both rate-

independent, only two factors may spoil the results: inertial forces due to high strain rates, and 

accumulating numerical integration errors due to overly large timesteps.  

To validate the parameters for the crushing process, two control tests were run:  

 one with a smaller strain rate of 0,1 mm/s; with the reference timestep of 10-8 s (referred to 

in the diagrams as “SmallStrainRate”) 

 and another with a smaller timestep of 10-10 s; with the reference strain rate of 10 mm/s) 

(referred to as “SmallTimestep”) 

The grain’s response to loading is best expressed through the force-displacement diagram. The 

damage to the grain may be described via the ratio of broken bonds (number of broken bonds 

against number of all bonds at the start of the test). Inertial forces or pressure waves may be 

caught by monitoring the difference of forces between the top and bottom platens (“force 

difference”, defined as (Ftop-Fbottom)/Ftop). 

 The force-displacement diagrams, the evolution of the ratio of broken bonds, and the force 

difference  are shown in 7. Fig., 8. Fig., and 9. Fig. respectively, all plotted against the 

compressive strain ε. 

 
7. Fig.: Force-displacement diagrams for the validation tests 

 
8. Fig.: Ratio of broken bonds in the validation tests 
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9. Fig.: Force difference between top and bottom platens in the validation tests 

It can be seen that up to the force peak at approximately ε=1.3% compressive strain, both the force-
displacement diagram (7. Fig.) and the ratio of broken bonds (8. Fig.) are identical in all 3 cases, with 
the force difference also being negligible (9. Fig.). The 3 cases start to differ after the post-peak drop 
around ε=1.3%, when the grain crushes into several parts and detaches from the loading platens. At 
this point, the fragments lose their stable positions and the grain disintegrates. 
It is worth noting that the small and reference strain rates produce almost the same postcritical 
behaviour from ε=1.3% until ε=1.8%. Altogether, using the above parameters for the grain crushing 
process is justified, since they catch the main features of the grain crushing process correctly. 
The above figures also show that the grains indeed behave rate-independent for the compression 

rates used in the simulations. 

3.3 Suitability tests 
The first objective of the single macrograin crushing tests was to prove that the idea of using the 

same macrograin multiple times in the oedometer can be justified. The main questions were: 

 Does the simulated grain strength follow a proper distribution? 

 Does the grain contain weak planes or directions? 

The suitability tests comprised a series of n=96 single macrograin crushing test for the Dmacro=4mm 

macrograin, with the grain properties given in 3. Table, and the procedure described in Section 3.1. 

To answer the first questions, the survival probability was evaluated and the Weibull distribution 

parameters fitted. A description of the fitting procedure is given e.g. in (McDowell, Statistics of soil 

particle strength, 2001). Briefly, the crushing strengths (in this case, the forces, since d from Eq. (1)  is 

constant: d= Dmacro=4mm) are put in ascending order, and a calculated survival probability 

Ps,cal(i)=i/(n+1) is assigned to the i-th element F(i).  These value pairs (F(i)- Ps,cal(i)) are represented in 

10. Fig. as dots. The parameters of the Weibull distribution, m and F0= σ0· Dmacro
2, are found by linear 

regression from the Weibull plot. In the Weibull plot (not shown here, see e.g. (McDowell, Statistics 

of soil particle strength, 2001)), the values ln(ln(1/Ps,cal(i))) are plotted against ln(F(i)). m is then the 

slope of the linear regression line, while F0 is found at the intersection of the regression line with the 

horizontal axis ln(F). The fitted survival probability after Eq. (2) is shown in 10. Fig. as the solid curve. 
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10. Fig.: Measured and predicted survival probabilities for the 4mm "reference" macrograins 

The Weibull modulus evaluated to m=3.78, which is a realistic value for mineral grains according to 

(Nakata, Kato, Hyodo, Hyde, & Murata, 2001). The correlation coefficient of the linear regression in 

the Weibull plot was R2=0.918, and R2=0.907 was calculated for the fitted curve itself, but the curve 

shows a rather strong deviation in the upper range, it overestimates the measured survival 

probabilities. As will be seen later, each test series delivered similar results. 

 

In each crushing test, the spatial orientation (given by the rotation angles α and β) of the grain was 
tracked until reaching a stable position. The crushing strengths are plotted against α and β in 11. 
Fig.11: 

 
11. Fig.: Crushing strengths of the D=4mm "reference" macrograin; α on the horizontal axis, β on the vertical 
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The red points in 11. Fig. mark the (α, β)-pairs in the test series, and the contour plot’s values are 
interpolated from the corresponding crushing strengths at each point. The plot shows a rather 
random pattern, while no weak plane or direction is apparent. The evaluation of other test series 
also delivered similar results. 

The first conclusion that may be drawn from 10. Fig. and 11. Fig. is that a single macrograin exhibits a 
wide range of crushing strengths, depending on the direction of loading. Second, no weak planes are 
apparent, showing a proper inner structure resembling randomly distributed flaws. The latter 
observation is unlikely to be supported or refuted by real experiments due to the destructive testing 
method, but the DEM simulation allows the same grain to be tested in different conditions. 

Altogether, using the same macrograin multiple times in the oedometer seems to be justified by the 
above results. 

3.4 Parameter tests 
A complete parameter analysis involving all the model parameters was not conducted due to the 

large number of possible parameters. Such complete analyses are possible with so-called “design-of-

experiment” methods, presented e.g. in (Hanley, O'Sullivan, Oliveira, Cronin, & Byrne). Design-of-

experiment methods also enable the identification of parameter interactions, and offer optimization 

possibilities for their calibration. Notwithstanding their merits in “fine-tuning” model parameters, 

they are time-consuming to carry out for a large number of parameters and possible parameter 

values. 

In contrast, the influence of the selected main model parameters was investigated with a number of 

crushing test series, where only one of the parameters was changed at a time. Calibrating the 

macrograins to match some specified target values was out of the scope of the research, although it 

was required that the overall behaviour should resemble that of brittle mineral grains. 

The investigated parameters can be grouped into 4 main categories, with a short description given 

below: 

 Parallel bond properties 

 Variability of bond strength: normally distributed bond strengths; with ν=0.10, ν=0.25, 

ν=0.50, where ν=s/μ is the coefficient of variation (standard deviation/mean), and ν=0 in 

the reference case. The mean value μ was the same for the cases with different ν. These 

test series covered the Dmacro=2mm, Dmacro=3mm, and Dmacro=4mm macrograins. 

 Depleting bonds: for 10% and 20% of the bonds, the bond strength was decreased to 1% 

of its original value. The rest of the bond strengths were left at their original, reference 

values. These test series covered the Dmacro=2mm, Dmacro=3mm, and Dmacro=4mm 

macrograins. 

To examine the combined effect of depleted and “normally-distributed” bonds, 2 further 

test series were conducted on the Dmacro=4mm macrograin, with 10%/20% of the bonds 

depleted, and a normal distribution with ν=0.25 for the rest. 

To investigate the effect of simultaneously decreasing the bond stiffness, a short test 

series was also carried out for Dmacro=4mm, with both bond strength and stiffness reduced 

to 1% of the original value for 10% of all bonds. The intact bonds’ strengths were chosen 

from a normal distribution with ν=0.25. 

 Higher/lower bond strength: the bond strengths were doubled and halved, to 2·σpb=930 

MPa and 0.5·σpb=232.5 MPa. This was carried out on all macrograins, including 

Dmacro=2mm, Dmacro=3mm, and Dmacro=4mm. 
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 Higher/lower bond stiffness: higher and lower bond stiffnesses were applied to the 

Dmacro=4mm macrograin, 4· Kpb =1900 GPa and 0.25· Kpb =118.75 GPa were chosen instead 

the reference value of Kpb= 475 GPa. 

 Inner geometry of the macrograin: (only on Dmacro=4mm grain) 

 Radius ratio of micrograins: The ratio of the largest and smallest micrograins was 1:1 and 

3:1. In the 1:1 case, all micrograins have the same diameter of dmean=0,5mm. In the 3:1 

case, the diameters are uniformly distributed between dmin and 3·dmin, with dmean=0,5mm.  

 Macrograin resolution: The macrograin is built up from smaller micrograins. In the case 2x 

(double resolution) the size range of the micrograins is scaled down such that their 

volume reduces to 1/2. In the 4x resolution case, the micrograin volume is scaled down to 

1/4. 

For further details on the geometrical properties, see 2. Table. 

 Lateral constraint:  

A box-shaped lateral confinement was added to prevent/reduce lateral expansion. The tests 

are conducted for ν=0-0.10-0.25-0.50., but limited to the macrograin size Dmacro=4mm. 

 Size effect:  

Conducting the parameter tests on Dmacro=2mm, Dmacro=3mm, and Dmacro=4mm enables to 

assess the size effect  associated with the different parameters. For this end, the test series 

with the “reference” parameters, along with higher and lower bond strengths, “normally-

distributed” and depleted bonds were carried out on all macrograin sizes, and the resulting 

strengths were compared on stress-basis, i.e. by calculating the grain strength according to 

Eq. (1). 

 

The results of the parameter analysis series will be outlined below, along with the description of each 

series. The evaluation of the survival probability and the fitting procedure for the survival probability 

is identical to that described in Section 3.2. The relevant model parameter values are also given in 

each section, while the values belonging to the “reference” case are shown in 3. Table. In most cases, 

only 2 alternative values were tested against the reference configuration, and interactions may be 

present between certain parameters. Therefore, the interpretation of the results will be mainly 

qualitative, with the possible mechanisms described, but some tentative quantitative evaluation will 

also be provided. 

The tables in each section contain the numerical results of the crushing series evaluations; with n 

being the number of valid results, σmean the mean strength,  σ0= F0/Dmacro
2 the characteristic strength, 

m the Weibull modulus, and R2 the coefficients of determination for the survival probability PS and 

the Weibull plot regression. 

As can be anticipated for the high values of R2, the mean strength calculated from the Weibull-

distribution for a given test series was always well within one standard deviation from the mean 

strength calculated from the raw results, calculated as         √ . 

The results of the crushing test series are also shown in Fig. 11-20, with the actual crushing strengths 

displayed as dots and the fitted survival probabilities with continuous lines. 

3.4.1 Normal distribution of bond strengths 

Applying a normal distribution to the bond strengths is one possible way to simulate the inner flaws 

of the grain material.  In the reference cases, each bond had the same strength σpb=465 MPa, and for 
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the cases with different ν, these were overwritten by a random value drawn from a normal 

distribution. The mean value was fixed at μ=σpb=465 MPa, and the standard deviation calculated as 

s=ν · μ. A lower limit of 0.05·σpb was set for the random number, such that very low values were ruled 

out. All other parameter values were left unchanged, at their values shown in 3. Table. 

For the normal distributions applied to the bond strengths, the increasing variability ν results in 

decreasing grain strength. A plausible explanation for this may be that the cracks find their way 

through the weakest path. This is also visible in 13. Fig. 

 It is noteworthy that the decrease in σ0 is practically equal to the coefficient of variation – i.e. ν=0.10 

results in approx. 10% drop in σ0, while ν=0.50 results in approx. 50% decrease. The Weibull modulus 

m increases slightly with increasing ν. 

 
12. Fig.: Crushing test results for Dmacro=4mm, normal distribution of bond strengths 

4. Table: Crushing test results for Dmacro=4mm, normal distribution of bond strengths 

Dmacro 

[mm] Test series 

test results fitted survival probability function 

n 
[-] 

σmean 
[MPa] 

σ0 
[MPa] 

m 
[-] 

R2 - 
PS 

R2 - 
 Weib. pl. 

4 

ν=0 (reference) 96 19.22 21.42 3.78 0.907 0.918 

ν=0.10 106 17.54 19.51 3.75 0.956 0.941 

ν=0.25 88 14.84 16.45 3.80 0.969 0.969 

ν=0.50 117 10.03 11.05 4.09 0.990 0.988 

 

 
13. Fig.: Force-displacement plot for a crushing test with same initial conditions, but different ν 
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3.4.2 Depleting bonds 

Another possibility to include flaws in the grains is to “disconnect”, or deplete a certain number of 

bonds, as was shown by (Duxbury, Kim, & Leath, 1994). Due to numerical and programming 

considerations, the bond strength for the depleted bonds was not set to 0, but to 1% (4,65 MPa) of 

the original strength instead. It can be shown in a simple thought-experiment that this 1% (instead of 

0) does not affect the grain’s strength in a significant manner.  

To investigate the effect of depleted bonds, 10% and 20% of the bonds were depleted at random. To 

decide whether or not do decrease the bond strength, a random number between 0 and 1 was 

assigned to each bond, and if it was smaller than 0.1 or 0.2 respectively, the bond strength was 

decreased. All other parameter values were left unchanged, at their values shown in 3. Table. 

The results are shown in the first lines of 5. Table, and visualized in 14. Fig. 

The case with ν=0.25 and bonds depleted was chosen because the “flawless” parts of a mineral grain 

are also expected to show some variation and randomness in their texture. As the first step, the 

predefined amount of bonds (10% and 20% in the tests) was chosen at random, and their strength 

was decreased – as described previously. The second step consisted of randomizing the remaining 

90% or 80% as described in the previous section. The limits for the random number generation was 

set such that the “not depleted” bonds should have a strength within +0.5·μ around the mean (i.e. a 

deviation by +50% was allowed). This series enables to examine the joint effect of introducing flaws 

in two ways. 5. Table contains the numerical results, and Fig. 14. shows the corresponding plots. 

It can be seen from the results that – as expected – a higher percentage of disconnected bonds leads 

to lower grain strength, and the Weibull-moduli m fall within the desired range for mineral grains. 

However, the bond strength decreases nonlinearly with increasing depleted bonds-ratio. The 

decrease is less and less with each increase: in the ν=0 case, the drop between 0% and 10% depleted 

is ≈31%, while between 10% and 20% it’s only ≈22%. The trend is similar in the ν=0.25 case: the 

decrease being ≈20% and ≈18%, respectively. 

Cross-checking these results reveals that the flaws introduced by depleted bonds and the normal 

distribution on the intact ones “add up” in decreasing the ideal grain’s strength: in 14. Fig., the 

emerging curves show a lower strength for all ν=0- ν=0.25 pairs. However, the additional weakening 

by the normal distribution becomes less and less important with increasing ratio of depleted bonds: 

for 0% depleted the drop is ≈25%, for 10% depleted it reduces to ≈10%, while for 20% depleted it’s 

already only ≈7%. 
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14. Fig.: Crushing test results for Dmacro=4mm, bonds depleted (ν=0, ν=0.25) 

5. Table: Crushing test results for Dmacro=4mm, bonds depleted 

Dmacro 

[mm] Test series 
test results fitted survival probability function 

n 
[-] 

σmean 
[MPa] 

σ0 
[MPa] 

m 
[-] 

R2 - 
PS 

R2 - 
 Weib. pl. 

only bonds depleted 

4 

0% depleted, ν=0 
(reference) 

96 19.22 21.42 3.78 0.907 0.918 

10% depleted, ν=0 111 13.45 14.74 4.43 0.974 0.962 

20% depleted, ν=0 122 10.47 11.53 4.09 0.986 0.984 

bonds depleted + normal distribution 

4 

0% depleted, ν=0.25 88 14.84 16.45 3.80 0.969 0.969 

10% depleted, ν=0.25 107 12.03 13.15 4.61 0.995 0.983 

20% depleted, ν=0.25 120 9.79 10.73 4.45 0.993 0.981 

bonds depleted: only strength vs. strength & stiffness 

4 

10% depleted, ν=0.25 
only strength 
decreased (A) 

21 11.84 12.84 5.23 0.932 0.945 

10% depleted, ν=0.25 
strength &stiffness 
decreased (B) 

21 11.63 12.58 5.46 0.947 0.923 

 

Another issue is whether or not to decrease the depleted bond’s stiffness along with the strength. 

We were not able to decide for one possibility over the other by reasoning alone – therefore we 

included a short comparison in the test series, with n=21 corresponding tests starting from the same 

initial conditions. 

The comparison of the cases with only strength reduced (series A), and with both strength and 

stiffness reduced (series B) shows that the resulting average grain strength is practically the same: 

the mean and characteristic strengths σmean and σ0, as well as the Weibull-modulus m are almost 
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identical. To gain a deeper insight, we calculated the differences in the crushing strengths for each 

corresponding tests as (FB-FA)/FA and FB/FA; FA being the crushing force in series A and FB the crushing 

force in the corresponding test in series B. The mean strength FB in series B evaluated to FB=0.989·FA, 

with a standard deviation of s=0.101. Plotting the histograms for (FB-FA)/FA and FB/FA shows that the 

differences between the series A and series B results are of random character (15. Fig. a and b). For 

the histogram of (FB-FA)/FA the fitted normal distribution is displayed, as is the fitted lognormal 

distribution for FB/FA. In our point of view, the ratio FB/FA and the lognormal distribution are more 

appropriate to represent the differences, since a normal distribution may yield negative values, 

which is impossible for FB. Another argument for the lognormal distribution is that the histograms 

show skewed datasets – however their skewness (0.766) is greater than for the lognormal 

distribution (0.305), and for the normal distribution (0). The kurtosis (6.102) is almost the double 

than for the lognormal distribution (3.166) and for the normal distribution (3), meaning that the 

values for FB are narrowly concentrated around FA. 

 
15. Fig.: a) histogram for (FB-FA)/FA, with fitted normal distribution;  b) histogram for FB/FA, with fitted lognormal 
distribution 

Since the resulting strengths in series A and series B are very close to each other – as confirmed by 

the values in 5. Table and the histograms in 15. Fig. – only the bond strengths were decreased for the 

depleted bonds, and the stiffnesses were left unchanged. 

3.4.3 High and low bond strengths and stiffnesses 

To investigate the effect of the (average) bond strength on the grain strength, the parallel bond 

strengths were varies: one test series was run with the bond strength  increased to 2·σpb=930 MPa 

and another test series with bond strength decreased to 0.5·σpb=232.5 MPa. 

When doubling and halving the bond strengths, the corresponding characteristic and mean strength 

also doubled and halved, while the Weibull modulus m decreased moderately in both cases. Since 

crushing of the grains is mainly caused by splitting tensile stresses, which are carried predominantly 

by the parallel bonds, the nearly linear dependence of grain strength on bond strength seems 

appropriate. 

The stiffness of a contact in PFC is the sum of the Hertz contact’s and the parallel bond’s stiffness 

(they act “parallel”, see 1. Fig.), a larger variation was chosen for the parallel bond stiffness than for 

its strength. The two tested values were 4·Kpb=1900 GPa and 0.25·Kpb=118.75 GPa agains the 

reference value of Kpb= 475 GPa. The change in bond stiffness was found to be nearly linear, and 

inversely proportional to the change in σmean and σ0: the increase/decrease was approx. 11-14% when 

decreasing/increasing the bond stiffness to 0.25x / 4x of the reference value. This result may seem 

strange at first sight, but may be explained by the fact that in a contact, the contact force is divided 

between the Hertz-Mindlin contact and the parallel bond proportional to their stiffnesses. Increasing 
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the bond’s stiffness causes a larger portion of the contact force to be carried by the bond, which 

consequently leads to higher stress and earlier failure. The Weibull modulus m decreased moderately 

in both cases. The results are presented in 6. Table and 16. Fig. 

 
16. Fig.: Crushing test results for Dmacro=4mm, high and low bond strengths and stiffnesses 

6. Table: Crushing test results for Dmacro=4mm, high and low bond strengths and stiffnesses 

Dmacro 

[mm] Test series 

test results fitted survival probability function 

n 
[-] 

σmean 
[MPa] 

σ0 
[MPa] 

m 
[-] 

R
2
 - 

PS 
R

2
 - 

 Weib. pl. 

Parallel bond properties – strength and stiffness 

4 

reference 96 19.22 21.42 3.78 0.907 0.918 

High bond strength (930 MPa) 56 37.24 41.69 3.57 0.862 0.890 
Low bond strength (232.5 MPa) 94 8.77 10.01 2.98 0.851 0.883 
High bond stiffness (1900 GPa) 107 16.49 18.56 3.17 0.920 0.911 
Low bond stiffness (118.75 GPa) 86 21.37 23.98 3.53 0.856 0.822 

3.4.4 Inner geometry 

In the parameter tests regarding the macrograins’ inner geometry, two main aspects were examined. 

It’s a general concept that with uniform particle sizes quasi-regular packings may appear, which can 

lead to “crystallization” of the grains – with certain directions acting as weak planes in the matrix. 

Conversely, a broader size-range can lead to tighter packings, but the (micro)grain size distribution 

for such cases is not uniform. For this end, the size range of the constituting micrograins was 

changed, with the mean value kept identical to the reference case, dmean=0,5mm. The ratio of the 

largest and smallest micrograins was set to 1:1 and 3:1. In the 1:1 case (referred to in 17. Fig. as “hilo 

1”), all micrograins have the same diameter of dmean=0,5mm (dmax/dmin=1). In the 3:1 case (called “hilo 

3” in 17. Fig.), the diameters are uniformly distributed between dmin=0.25mm and 

dmax=3·dmin=0.75mm, with dmean=0.5mm.  

 Another common concept is that using more and more micrograins to build a macrograin– i.e. 

increasing its resolution – will lead to more realistic results in the crushing process. This may be true, 

but – as will be seen in Section 4.1 – this needs a rather large increase of the grains’ resolution. On 

the other hand, the available computational power imposes a strong restraint on this approach. To 

investigate this effect, the macrograin was built up from smaller micrograins. In the case 2x (double 

resolution) the size range of the micrograins is scaled down such that their volume reduces to 1/2, 

i.e. the radius is decreased to √  ⁄
 

. In the 4x resolution case, the micrograin volume is scaled down 

to ¼, with the radius range is decreased to √  ⁄
 

. An overview of the geometrical properties is given 

in 2. Table. 
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The parameter tests on the geometrical properties delivered the least number of valid results, 35 to 

36, which are still sufficient for a proper evaluation. Surprisingly, each variation resulted in 

significantly weaker grains. The changes in the size range of the micrograins do not show a consistent 

trend: both the radius ratios of 1:1 and 3:1 appear weaker than the reference case with 1.5:1. 

Increasing the resolution of the macrograins (using smaller micrograins) resulted in constantly 

decreasing grain strength. The Weibull modulus m varied strongly in these test series. In the light of 

these results, a more detailed analysis on the inner geometrical properties would eventually be 

appropriate. 

 

 
17. Fig.: Crushing test results for Dmacro=4mm, different inner geometries 

7. Table: Crushing test results for Dmacro=4mm, different inner geometries 

Dmacro 

[mm] Test series 
test results fitted survival probability function 

n 
[-] 

σmean 
[MPa] 

σ0 
[MPa] 

m 
[-] 

R2 - 
PS 

R2 - 
 Weib. pl. 

Inner geometry properties 

4 

reference 96 19.22 21.42 3.78 0.907 0.918 

Radius ratio 1:1 35 11.16 12.08 5.47 0.942 0.942 

Radius ratio 3:1 36 8.60 9.53 3.80 0.908 0.887 

2x resolution 36 6.41 7.37 1.68 0.965 0.949 

4x resolution 35 8.56 9.49 3.89 0.974 0.952 

 

3.4.5 Lateral constraint 

To investigate the crushing resistance in a confined condition, lateral walls were added. After the 

grain has come to a rest, 4 lateral walls were placed along with the top platen. These lateral walls 

formed a rectangular box, touching upon the grain at 4 contact points. The crushing process then 

commenced as in the unconfined cases. The test series was repeated with lateral confinement for 

each case described in Section 3.4.1 (ν=0-0.10-0.25-0.50).  18. Fig. and 8. Table present the results, 

with the dashed lines showing the fitted curves for the unconstrained cases. There’s only a slight 

difference between the crushing strengths in the unconfined and confined cases:  
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18. Fig.: Crushing test results for Dmacro=4mm, laterally confined cases 

8. Table: Crushing test results for Dmacro=4mm, laterally confined cases 

Dmacro 

[mm] Test series 
test results fitted survival probability function 

n 
[-] 

σmean 
[MPa] 

σ0 
[MPa] 

m 
[-] 

R2 - 
PS 

R2 - 
 Weib. pl. 

Reference cases 

4 

unconstrained, ν=0 (reference) 96 19.22 21.42 3.78 0.907 0.918 
constrained, ν=0 103 18.79 20.97 3.61 0.911 0.919 
unconstrained, ν=0.10 106 17.54 19.51 3.75 0.956 0.941 
constrained, ν=0.10 102 17.63 19.51 3.99 0.958 0.959 
unconstrained, ν=0.25 88 14.84 16.45 3.80 0.969 0.969 
constrained, ν=0.25 103 15.17 16.84 3.77 0.962 0.967 
unconstrained, ν=0.50 117 10.03 11.05 4.09 0.990 0.988 
constrained, ν=0.50 122 10.00 11.02 4.08 0.993 0.985 

Examining the corresponding force-displacement diagrams (belonging to the same initial conditions, 

the only difference being the confinement) reveals that the confinement usually increases the 

resistance, but only slightly and not in a consistent way. In some cases, even reduced resistances 

were observed. Three examples for corresponding force-displacement diagrams are shown in 19. 

Fig.: 
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19. Fig.: Corresponding unconstrained and constrained force-displacement diagrams 

A clear increase in the force-displacement diagrams was only achieved at higher compressions, see 

20. Fig. This is due to the brittleness of the grains: they have to break first, so that the fragments can 

fill up the voids and develop additional resistance. However, the lateral walls in these tests were only 

touching the grain and prohibiting lateral extension. They may have a stronger effect when they also 

exhibit considerable contact forces – i.e. in multi-point loading. 
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20. Fig.: Crushing tests until larger displacement (ε=25%) 

Altogether, the lateral confinement seems to have only little effect on the crushing resistance of the 

grain, but is important in an ensemble, where the fragments fill the void space and provide additional 

resistance. 

3.4.6 Size effect 

To investigate the well-known size effect on grain strength, some of the above parameter tests – 

along with the reference case (3. Table) – were extended to Dmacro=2mm and Dmacro=3mm grains. The 

tested parameters were: 

 normal distribution on bond strengths (Section 3.4.1) 

 depleted bonds (Section 3.4.2) 

 higher and lower bond strengths (Section 3.4.3) 

Alongside the usual survival probability plots and the summary tables, the experienced and expected 

dependence of grain strength on grain size will be plotted for each case. Here, the expected size 

effect is assumed to be described by Eq. (2) and is shown in 4. Fig. However, the size effect depends 

mainly on the evolution of inner flaws in the material, i.e. the distribution of crack sizes and crack 

propagation. Not all materials follow the Weibull size effect, with experimental evidence presented 

in (Nakata, Hyde, Hyodo, & Murata, 1999), and theoretical explanation given in (Duxbury, Kim, & 

Leath, 1994). 

The survival probability plots for the reference configurations are shown in 21. Fig., and the relevant 

parameters are summarized in 9. Table. It can be seen that the mean strengths σmean increase slightly 

with increasing grain strength – an opposite tendency to what is expected. This tendency is 

presented in 22. Fig., with the red dots showing the crushing test results, and the Weibull prediction 

depicted as the blue curve. The Weibull prediction is calculated from σ0(3mm) and the average m 

from 9. Table, according to Eq. (2). (It could also be plotted for σ0(2mm) or σ0(4mm), with similar 

results.) 

0
50

100
150
200
250
300
350
400

0% 5% 10% 15% 20% 25%

Fo
rc

e
 F

Z 
[N

] 

compressive strain ε 

constrained

unconstrained



31 
 

 
21. Fig.: Crushing test results for Dmacro=2-3-4mm grains, reference cases 

9. Table: Crushing test results for Dmacro=2-3-4mm grains, reference cases 

Dmacro 

[mm] Test series 

test results fitted survival probability function 

n 
[-] 

σmean 
[MPa] 

σ0 
[MPa] 

m 
[-] 

R2 - 
PS 

R2 - 
 Weib. pl. 

4 

reference (ν=0) 

96 19.22 21.42 3.78 0.907 0.918 

3 103 16.74 18.37 4.66 0.942 0.905 

2 115 16.32 18.54 2.52 0.962 0.944 

 
22. Fig.: Size effect in the reference case (red dots: test results, blue curve: Weibull prediction) 

The same phenomenon can be observed in Fig. 22-24. for the cases with different normal 

distributions applied to the bond strengths. The survival probability plots are shown separately for 

(ν=0.10-0.25-0.50), and the parameters are presented numerically in 10. Table. The trends in each 

case are similar to that observed for the reference case, with the size effect shown in 26. Fig. 
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23. Fig.: Crushing test results for Dmacro=2-3-4mm grains, ν=0.10 

 
24. Fig.: Crushing test results for Dmacro=2-3-4mm grains, ν=0.25 

 
25. Fig.: Crushing test results for Dmacro=2-3-4mm grains, ν=0.50 

10. Table: Crushing test results for Dmacro=2-3-4mm grains, ν=0.10 - 0.25 - 0.50 

Dmacro Test series test results fitted survival probability function 
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[mm] n 
[-] 

σmean 
[MPa] 

σ0 
[MPa] 

m 
[-] 

R2 - 
PS 

R2 - 
 Weib. pl. 

4 

ν=0.10 

106 17.54 19.51 3.75 0.956 0.941 

3 110 17.10 18.78 4.45 0.981 0.969 

2 110 15.92 17.87 3.14 0.968 0.966 

4 

ν=0.25 

88 14.84 16.45 3.80 0.969 0.969 

3 102 16.32 17.86 4.66 0.986 0.971 

2 102 14.12 15.65 3.83 0.991 0.987 

4 

ν=0.50 

117 10.03 11.05 4.09 0.990 0.988 

3 128 10.10 10.95 5.39 0.987 0.985 

2 109 8.31 9.19 3.74 0.988 0.988 

 
26. Fig.: Size effect in the ν=0 - 0.10 - 0.25 - 0.50 cases (black: ν=0; red: ν=0.10; yellow: ν=0.25; blue: ν=0.50) 

The results for the size effect investigations for the depleted bonds are given in 27. Fig., 28. Fig., 11. 

Table, and 29. Fig. Generally, the same trends apply as seen in the reference cases and the normal 

distributions on bond strength. 

 
27. Fig.: Crushing test results for Dmacro=2-3-4mm grains, 10% of bonds depleted 
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28. Fig. : Crushing test results for Dmacro=2-3-4mm grains, 20% of bonds depleted 

11. Table: Crushing test results for Dmacro=2-3-4mm grains, 10% and 20% of bonds depleted 

Dmacro 

[mm] Test series 
test results fitted survival probability function 

n 
[-] 

σmean 
[MPa] 

σ0 
[MPa] 

m 
[-] 

R2 - 
PS 

R2 - 
 Weib. pl. 

4 

10% depleted, ν=0 

111 13.45 14.74 4.43 0.974 0.962 

3 105 13.97 15.10 5.63 0.965 0.967 

2 99 11.89 13.25 3.30 0.996 0.994 

4 

20% depleted, ν=0 

122 10.47 11.53 4.09 0.986 0.984 

3 117 10.16 11.03 5.24 0.987 0.977 

2 96 8.45 9.49 2.88 0.981 0.978 

 
29. Fig.: Size effect in the “0% reference, 10% and 20% of bonds depleted” cases (black: 0% red: 10%; yellow: 20%) 

It was seen in Section 3.4.3 that increasing or decreasing the bond strengths affects the grain’s 

crushing strength in the same manner, i.e. doubling the bond strengths leads to a doubled crushing 

strength. From 30. Fig. it is apparent that the above statement applies for all tested macrograin sizes. 

The numerical results in 12. Table are in accordance with the observations made for all the other 

investigated cases: the mean strength of the grains increase slightly with grain size, and the Weibull 

moduli show the same trend. 
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30. Fig.: Crushing test results for Dmacro=2-3-4mm grains; reference, higher and lower bond strengths 

12. Table: Crushing test results for Dmacro=2-3-4mm grains; reference, higher and lower bond strengths 

Dmacro 

[mm] 
Test series 

test results fitted survival probability function 

4 
Normal bond strength;  
σpb=465 MPa (reference) 

96 19.22 21.42 3.78 0.907 0.918 

3 103 16.74 18.37 4.66 0.942 0.905 

2 115 16.32 18.54 2.52 0.962 0.944 

4 
High bond strength; 
σpb=930 MPa 

56 37.24 41.69 3.57 0.862 0.890 

3 85 34.09 37.48 4.36 0.923 0.906 

2 104 31.83 35.89 2.83 0.962 0.954 

4 
Low bond strength; 
σpb=232.5 MPa 

94 8.77 10.01 2.98 0.851 0.883 

3 113 8.67 9.42 5.33 0.943 0.914 

2 112 7.61 8.64 2.68 0.952 0.947 

 
31. Fig. Size effect for normal, high and low bond strengths (black: normal; red: high; yellow: low) 

Taking a closer look, a slightly increasing trend for σ0 with increasing Dmacro can be discovered: when 
evaluating the trend as a power law, we get ≈0.2 for the exponent:  
σ0(d) ≈ σ0(d0)·(d/d0)

0.2.  

In contrast, the size effect included in the Weibull distribution can be expressed as 
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In Eq. (5), the exponent -3/m is always negative for any positive m, which leads to a decreasing   ( ) 

for increasing d. This is consistent with laboratory evidence (Nakata, Hyde, Hyodo, & Murata, 1999) 

and theoretical considerations (Duxbury, Kim, & Leath, 1994). The exponent of ≈0.2, derived from 

the simulations contradicts the latter by predicting increasing grain strength with grain size. 

(McDowell & Harireche, 2002) found a similar, nonlinear trend in their simulations and proposed to 

scale the bond strength according to the grain size. Since a grain may undergo repeated crushing in 

an oedometer test, the scaling had to be applied many times in a crushing process, depending on the 

current size of the fragments. 

Since the authors of this report do not know about a consistent approach for incorporating the 

proper size effect, and the increasing trend was rather weak for the current macrograins, a simplified 

approach will be investigated. For most of the oedometer simulations, the same “rule” was applied 

to the macrograins of all initial sizes, i.e. the same normal distribution, same inner geometry, etc.  

The case with “reference” macrograins will then be compared to an oedometer test with the amount 

of bonds depleted depending on the macrograin’s diameter. The following ratios were depleted: 

Dmacro=2mm – 0%; Dmacro=3mm – 10%; Dmacro=4mm – 2%. Although the evolution of the 

fragments’ strengths will probably not follow Eq. (5), the onset of yielding may be caught more 

realistically.   The mean strengths and the expected strengths after Eq. (5) are shown in 32. Fig.: 

 
32. Fig.: Size effect for ratio of depleted bonds varying with Dmacro 

4 Oedometric compression tests 
The grains described in the previous two sections were placed into an oedometer for simulating high-

pressure compression tests. The aim of these was to investigate the grain crushing process and to 

study the behaviour of the ensemble at high pressures. The oedometer was box-shaped with a 

square base of 16mm length, and the starting height also being around 16mm. (The aspect of starting 

height will be discussed below in more detail.) The oedometric test comprises 2 main phases: the 

specimen preparation phase and the compression phase. 

4.1 Specimen preparation phase 
The aim of the preparation phase is to produce the starting configuration of the grain ensemble. 

First, a predefined number of macrograins is placed in a spatial grid above the oedometer base. The 
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grid ensures that the macrograins are not in contact with each other whilst installing the parallel 

bonds between the micrograins. The grid cells are cubes with side lengths equal to the maximal 

macrograin diameter (4mm). They are arranged such that one horizontal row contains the number of 

cells that fit completely into the base length of the oedometer. The columns extend vertically until 

the grid provides cells for at least every grain. (However, empty cells may remain at the end of the 

macrograin generation.) The grid’s sketch and the filled cells are shown in33. Fig., parts a and b.  

 

33. Fig.: Cell grid in the oedometer a) cell arrangement; b) grid filled with macrograins; c) sedimentated specimen 

Once each of the macrograins is placed randomly in the cell centres, they are left to fall into the 

container. The macrograins are bundled as clumps during the sedimentation, to prevent undue bond 

failure in this phase. The sedimentation takes place under normal gravity of 9.81 m/s2. However, 

PFC3D’s default local damping ratio of 0.7 was used, which eliminates 70% of the unbalanced force 

acting on each particle, leaving only 30% of the gravity to act on a grain in free fall. To further smooth 

the landing of the grains, a viscous damping ratio of 0.9 was used for the contacts, both in 

compression and shear. The damping properties are computed for each contact such that it equals to 

90% of the critical damping coefficient. A detailed description of local and viscous damping in PFC3D 

is given in (Itasca, 2003). 

The sedimentation process ends if the ensemble reaches equilibrium. If either the ratio of maximal 

unbalanced force to the maximal contact force, or the average unbalanced force to average contact 

force drops below 10-4 during the calculation (i.e. the max./average unbalanced force in the system is 

smaller than 0,01% of the max./average contact force), it is considered as the equilibrium state. 

Here, a manual check is important in order to verify that the reached state is stable. (This is similar to 

the equilibrium point of a simple, harmonic oscillator, where the acceleration – and the force – is 

zero, but the state is not stable.) Since both gravity and damping are active during the sedimentation, 

a stable state is eventually reached, but – as was the case in some of the calculations – unstable 

states may also be attained before. (To avoid the system to be “trapped” in such a state, additional 

calculation cycles need to be carried out. If the ratio of max./average unbalanced force to 

max./average contact force further converges to 0, then the stable equilibrium state is reached. If it 

rises again above 10-4, then the reached equilibrium state was unstable, and the calculation must 

proceed.) 

To ensure a good contact and zero stress, the top platen is placed such that it touches upon the 

uppermost micrograin.  In this position, the top platen is stress-free, and the ensemble is only loaded 

by its self-weight. At this point, the surface of the specimen is rather uneven, with large voids 
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eventually present around the oedometer corners and edges. If so, there’s a possibility to manually 

add macrograins to fill these voids and ensure a compact packing. In this case, the specimen is again 

stepped to equilibrium. A sedimentated specimen is shown in 33. Fig., part c. 

As the last step of the preparation phase, the parallel bond properties may be modified. (E.g. by 

applying a normal distribution to the bond strengths, depleting some bonds, etc.)  The bundling of 

the micrograins into clumps is lifted, and the viscous damping is set to 0.  (For comparison, one 

compression test was conducted with the viscous damping set to 0.5 for the compression phase – 

the results will be discussed later.) 

The grain size distribution of the specimen is shown in 34. Fig., with the diagram divided into 

fractions used in soil mechanics. The blue and purple curves show the initial grain size distributions: 

the manually-placed small grains (Dmacro=2mm) account for the higher fine fraction of the purple 

curve. The shaded area to the right of the red curve shows the possible range of grain size 

distributions with the current micrograins, i.e. the red curve is the comminution limit. The initial 

curves are gap-graded, since they contain only 2mm, 3mm, and 4mm macrograins, each with exactly 

the same geometry. The number of macro- and micrograins in the different specimens tested are 

shown in 13. Table. 

 
34. Fig.: Grain size distributions in the oedometer tests 

13. Table: Overview of macro- and micrograin numbers, initial heights 

Specimen Number of macrograins Overall nr. 
of 

micrograins 

initial 
height 

h0 [mm] 

initial core 
void ratio 

ecore [-] 
Dmacro = 2 

mm 
Dmacro = 3 

mm 
Dmacro = 4 

mm 
Overall 

Fric. 0.55 – dense 196 70 12 278 24 638 20.5 2.05 

Fric. 0.55 – loose 40 70 12 122 17 150 17.6 2.56 

Fric. 0.55 – 4x res. 40 70 12 122 81 520 16.0  

Fric. 0.4 

40 70 12 122 17 150 

  

Fric. 0.3   

Fric. 0.2 17.2  

Fric. 0.0 17.9 2.49 

 

4.2 Compression phase 
When the specimen is prepared – equilibrium reached, bond properties set, clumps released and top 

platen being in position – the sequence of compression steps is started.  A compression step 
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comprises 2 substeps: actual loading and subsequent equilibration, with the parameters given in 14. 

Table: 

14. Table: parameters of a single compression step 

I. loading substep II. equilibration substep 

length of timesteps 10-6 s length of timesteps 10-6 s 

calculation cycles 20 000 calculation cycles 2 000 

duration 0,02 s duration 0,002 s 

top platen velocity 8 mm/s top platen velocity 0 mm/s 

compression 0,16 mm  

The compression steps are repeated until the specimen reaches a height of 0.375·h0 (h0 being the 

specimen’s initial height), requiring usually 70-90 steps, depending on h0. This is sufficient to surpass 

the point where the initial macrograins are broken down almost completely into individual 

micrograins, and from where the densification of the ensemble is controlled by the elastic 

compression of the micrograins. It must be noted however that the model loses its validity at this 

point, since contact forces and stresses may increase unlimitedly – a feature that contradicts the 

behaviour of real grains. Although Eq. (5) predicts         ( )    , very small particles are 

squashed plastically, instead of splitting. (Kendall, 1978) 

The oedometer walls are considered completely stiff – as noted in Section 1.2 – and only the friction 

coefficient needs to be defined. In the current model, it was set to 0. The reason for this was prevent 

shear forces and – using continuum-mechanical terminology – shear strains to develop along the 

16mm wide walls, which are rather narrow compared to the maximal macrograin diameter of 4mm. 

(As a minimum, Doed=10·Dmax, hoed=5·Dmax are suggested for representative results.) This way the axis-

symmetric, practically linear strain conditions in the core of a real oedometer are better reproduced. 

Nevertheless, friction also appears along the walls of a real oedometer, but with a boundary 

disturbance-character and has a rather low impact in the specimen’s centre. The zero friction was 

also applied to the top and bottom platens. 

During the compression phase, the following properties were recorded: actual specimen height; void 

ratio; stresses acting on the walls; ratio of broken bonds due to normal and shear stresses; number 

of micrograin contacts with the top platen; difference between vertical stresses on the lower and 

upper platen; energy and work quantities. The sampling frequency was 1000 steps, i.e. 10-3 s, 

resulting in ≈1800-2200 data points recorded during each compression test. 

The void ratio was calculated in 2 ways:  

 Overall void ratio: from the volume of all micrograins and the actual oedometer volume. It 

also contains the effect of larger void space along the oedometer’s edges, and the inner voids 

of the macrograins. 

 Core void ratio: using PFC3D’s measurement functions, the void ratio in a “control volume” 

or core was recorded. The core was a sphere with a diameter half of the actual oedometer 

height (shrinking with decreasing specimen height), centred inside the oedometer. This 

allows the exclusion of disturbed boundary zones with high void volume. The core is shown 

in 35. Fig.: 
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35. Fig.: Specimen's core (shaded, spherical) 

The following energy and work quantities were traced: 

 Boundary work (of the top platen) 

 Kinetic energy of the ensemble 

 Strain energy stored in the micrograins and in the parallel bonds 

 Frictional work dissipated in the contacts 

4.3 Evaluation of the compression phase results 
The main aspects of the oedometric compression test in this research were the compression curve 

(e- lgσz or e- lg(3ps)) and the evolution of grain crushing, expressed as the ratio of broken bonds. 

These are shown in 36. Fig.for the dense specimen, with “reference” macrograin properties given in 

3. Table. 

 
36. Fig.: void ratios and ratio of broken bonds against the vertical stress for the „reference” dense specimen 

36. Fig. shows similar compression curves to those obtained from experiments by e.g. Bauer 1992, 

(Nakata, Hyodo, Hyde, Kato, & Murata, 2001), (Uygar & Doven, 2006), and (Guimaraes, Valdes, 

Palomino, & Santamarina, 2007). The curves for the overall and core void ratios are proportional, but 
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the overall void ratio is much higher due to the gaps along the specimen boundaries. (With a much 

larger specimen, the overall void ratio would lie closer to the core void ratio.) The compression 

curves can be divided into 3 distinct phases, as described in (Bolton & McDowell, 1997) or (Uygar & 

Doven, 2006):  

 small deformation or “elastic stiffening” phase until clastic yielding 

 clastic hardening or “normal compression”, after clastic yielding, and  

 limiting compression curve (approached asymptotically) 

The ratio of broken bonds shows a similar evolution to the compression curves: its gradients are 

proportional to the gradients of the compression curves. This indicates that grain crushing and the 

slope of the compression curve are closely related. 

 

To validate the parameters of the crushing process and the loadsteps, a similar procedure was 

applied as described in Section 3.3, at the single macrograin crushing tests. Here, the “loose” 

specimen (13. Table) was compressed with a smaller timestep: instead of 10-6 s (14. Table) it was set 

to 10-7 s; the initial conditions and all other parameters were not changed. This test will be referred 

to as “small timestep” below.  

 
37. Fig.: Number of particle contacts with the top platen (dots, left vertical axis), and core void ratio (line, right vertical 
axis) against time 

37. Fig. shows the number of particle contacts with the top platen, plotted against time elapsed since 

the start of the compression process. The evolution of the core is also indicated. Both the number of 

contacts and the evolution of the core void ratio show similar “trends” in each case. This means that 

the kinematics of the process is the same in both cases. First, when the densification is primarily 

governed by grain rearrangement, there are fewer contacts with the top platen. Later, when grain 

crushing becomes dominant, the number of contact increases and varies over a wide range. This is 

more pronounced in 38. Fig., when plotting the number of contacts against the mean vertical stress. 
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38. Fig.: Number of top platen contacts (left axis) and core void ratio (right axis) against vertical pressure 

The (mean) vertical stress σz is calculated as  

σz=
Ftop+|Fbottom|

2·Abase
   (6) 

where Ftop and Fbottom are the vertical forces acting on the top and base platens. If the specimen is 

compressed, Ftop points towards the positive z-direction, and Fbottom towards the negative, hence the 

absolute value. The compressive stress is taken to be positive. Since the micrograin-wall contact 

cannot sustain tension, Fbottom will always be non-positive, and both Ftop and |Fbottom| non-negative. 

Compressive stress is also taken to be positive. 

One requirement of the quasi-static loading process is that the forces Ftop and Fbottom should be 

almost identical in value (more precisely: |       |  Ftop + specimen weight). One way to introduce 

the “pressure difference” is 

 σz=
|Fbottom| Ftop

Abase
  (7) 

and the requirement for the quasi-static process may be formulated for high stresses (    

                ) more conveniently as the ratio of “pressure difference” to mean pressure: 

    σz   

The latter is shown in 39. Fig. for the reference and small timestep cases. It can be seen that in both 

cases,     σz  approaches zero from below. From the definition of     it follows that in such cases 

(     ) the pressure is larger on the top platen than on the bottom of the oedometer. Unlike in 

the reference case, the difference in the small timestep case remains rather low throughout the 

whole loading process (although some scatter at the beginning is visible).   

The scatter is very high in the reference case, especially in the “elastic stiffening” regime. Here, 

values for     σz even reach -2, which is the lower limit, meaning that the grains detach from the 
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upper platen: Ftop=0. During the “clastic hardening” phase, the scatter reduces, and on the “limiting 

compression curve” it converges to 0 from below. 

 
39. Fig.: "pressure difference" and core void ratios against lg(σz), for reference and small timestep cases 

In our opinion, the “pressure difference” between the top and bottom platens may be explained as 

follows. After the sedimentation of the specimen, the grain skeleton forms a stable structure, 

supported by the base platen and side walls. The number of contacts and the position of the grains is 

more or less stable, resulting in small variations due to grain rearrangement in the specimen. On the 

other hand, the top platen is placed such that it touches on the uppermost micrograin, without 

imposing contact forces. The surface of the sample is rather uneven. As the platen advances 

downward, it causes the adjacent grains to rearrange by a series of collisions and rebounds. This is 

reflected in the varying number of contacts, as well as in the “pressure difference” between the top 

and bottom platens. The higher “pressure difference” for the loading process with “reference” 

timesteps comes from the larger timestep itself: for the same advancement rate of the top platen, 

the displacement in a single timestep was 10x greater than in the “small timestep” case. When the 

downward-moving platen comes in contact with a steady or upward-moving particle, the overlap 

created in the contact is much greater than in the “small timestep” case. After (Itasca, 2003) the 

contact normal force is given by  

   
  ̅√  ̅

 ( - ̅)
       (8)

 
where U is the overlap in the contact. In a newly-formed contact, if for example U=10·Usmall (Usmall 

would be the overlap in the “small timestep” case), then Fn≈31·Fn
small, resulting in larger contact 

forces and consecutively larger vertical stress. This effect is important when there is significant grain 

rearrangement, i.e. before “limiting compression curve”. This may be the most plausible explanation 

for the shift between the compression curves in 37. Fig. - 39. Fig. 
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Another question to be addressed is the origin of the “oscillation” of the compression curves. It is 

understood that after impact, density waves travel not only in solid, but also in granular systems. On 

the other hand, the oscillation may also arise due to stress relaxation after grain rearrangement and 

crushing.  

To investigate this, an additional test was conducted along the aforementioned “reference” test for 

the dense specimen. The additional test had the same parameters as the “reference” configuration, 

but the viscous (contact) damping was set to 0.5 to reduce the rebound effect after particle 

collisions. Since the outcome of a compression test is influenced by small perturbations of the 

ensemble – e.g. through numerical errors –, the “reference” test was re-run 3 times, which resulted 

rather in a “band” for the compression curve than in exactly the same curve. The compression curves 

for the reference tests nr. 1-3 and for the test with contact damping are shown in 40. Fig. 

As it can be seen from 40. Fig., the “oscillation” of the compression curves did not change significantly 

after introducing the viscous damping into the system. 

 
40. Fig.: compression curves (overall and core void ratios) for the dense specimen: “reference” cases 1-3 and “contact 
damping” case, marked as ‘cd’. (Grey: reference cases, orange: contact damping case) 

Observing the pressures on the top and bottom platens against time also shows strong oscillations: 

41. Fig. and 42. Fig. show the aforementioned plots for the loose ensemble, “reference” and “small” 

timesteps. It can be seen that – as expected – the top pressure is higher almost every time in the 

“reference” timestep case, while the difference is vanishingly little in the “small timestep” case. The 

fine resolution in 42. Fig. shows that the curves for top and bottom pressures in the “reference” case 

are affine, but the bottom pressure curve does not exhibit the small local peaks seen on the top 

pressure curve, it follows the top curve rather smoothly. In accordance with the explanation given for 

the pressure differences above, the reason for this may be that the energy of small density waves – 

starting from the top platen – is easily dissipated by the friction between the grains, whereas larger 

waves – caused by larger rearrangement – are able to reach the bottom plate. Judged by the 
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corresponding curves for the “small timestep” simulation, the density wave takes less than 10-3 s 

(one sampling interval) to travel through the specimen. The pressure plots in 41. Fig. show rather 

stochastic than harmonic oscillations, which implies that these are caused primarily by grain 

rearrangement and breakage, rather than by reflected waves.   

 
41. Fig.: top and bottom pressures against time for the loose ensemble, reference and small timesteps 

 
42. Fig.: magnification of the top and bottom pressures curves from 41. Fig. 
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The fact that such oscillations were not observed in real compression tests may be explained by a 

number of reasons: 

 The number of grains in real samples is by orders of magnitude higher than in these 

simulations. The higher number of contacts would lead to a smoother overall pressure on a 

platen, since local extremes in the pressure distribution could bias the average pressure in a 

lesser extent. 

 The pressure in real tests is not measured directly on the contact plane of the grains and the 

platen, but rather by different auxiliary measures (e.g. height of the water column in a 

triaxial test in displacement-controlled tests), which introduces significant damping to the 

measurements. This would “blend” such oscillations into a smooth average. Furthermore, 

oedometric compression tests are very often stress-controlled. 

 The reading intervals of real tests are much longer, usually the reading is taken when the 

specimen has reached a steady state. This contrasts with the current model, where readings 

were taken at intervals of 10-3 s, throughout the whole loading process. 

To summarize the main points from the above section, it can be stated that: 

 The compression curves from the simulated tests qualitatively agree with those observed in 

real tests 

 The 3 domains on the compression curves are closely related to grain crushing and 

rearrangement: the first domain, “elastic stiffening” is governed by rearrangement, while the 

“clastic hardening” domain is influenced both by crushing and rearrangement, whereas the 

“limiting compression curve” depends mainly on grain rearrangement and elastic 

compression of the grains 

 The oscillations of the compression curve are caused by stress-relaxation of the specimen, 

and density waves do not play a significant role in this subject 

 The resulting compression curve is also influenced by numerical issues: the selection of a 

sufficiently small timestep is essential to properly follow the compression process. It has to 

be selected (adjusted) corresponding to the compression rate (platen velocity), but also to 

the size of the particles, and their stiffness, as can be seen from Eq. (8). 

By comparing the results of the tests with “reference” parameters and the “small timestep” case, it 

was found that the selected “reference” timestep of Δt=10-6 s was too large. It produced significant 

differences between the pressures on the top and bottom platens, while these vanished for a smaller 

timestep of Δt=10-7 s. It also shifted the compression curve to the right on the e-lg(σz) plot, while 

retaining its main features. However, the choosing a timestep of Δt=10-6 s was necessary due to the 

tremendous calculation time of the simulation series.  

5 Results of the oedometer tests 

5.1 Deformation and displacement patterns 
In a relatively loose grain ensemble, densification happens mainly due to the rearrangement of the 

grains. (Oldecop & Alonso, 2007) This is also followed by formation and decay of force chains 

between the grains. The force chains decay due to “buckling” of the grains which form the grain 

skeleton. (Gudehus, 2011, old.: 19 (4)) 
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If the ensemble gets denser, the force chains lose their stability less and less easily, and larger 

contact forces may develop. Eventually, the system gets “locked”, with no further densification 

possible without the breakage of some grains. Then, if a grain on a force chain breaks, the force chain 

is transferred to another path, followed by the rearrangement of the grain skeleton. 

On a microscopic level – for a volume smaller than the representative volume element – the 

displacements and rotations of the grains are highly heterogeneous. 

The displacement of the macrograins was examined during the compression phase. Besides the well-

known, heterogeneous displacement field, the following observation was made. 

In the initial configuration, when the top platen is placed upon the uppermost micrograin without 

applying any force to the grains, the surface of the specimen is not even. Upon first loading, the 

uppermost macrograin penetrates the specimen below, and the other macrograins on the surface 

are pushed aside and upward. This continues until the penetrating macrograin gets immersed, and 

the top platen catches up with the other macrograins too. 

 In a case where a single macrograin got trapped on top of the rest of the ensemble, the penetration 

can be followed both visually (not presented here), and on the initial part of the core void ratio plot 

(43. Fig.).The latter confirms that some dilatancy happens in this first phase, and the actual 

compression starts later, from the “top” of the void ratio curve.  

 
43. Fig. Core void ratio and top platen contacts of the loose specimen with a single grain trapped on top 

It can be seen on 43. Fig. that before the transition from dilatancy to compression, the number of 

contacts stays very low, and shows a steady increase afterwards. 44. Fig. shows the compression 

curves for the same specimen. The parts of the void ratio plots on the dilatancy branch are shown in 

orange. This way, the spurious initial parts of the compression curves are distinguished from the 

regular parts. 
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44. Fig.: Compression curves of the loose specimen with a single grain trapped on top 

For the dense specimen, where the gap below the top platen was filled manually, the dilatancy was 

negligible. Therefore the decision was made to discard the initial, “penetration” part of the 

compression curves from the evaluation of the results. 

5.2 Contact force distributions 
An interesting aspect of the compression test was the distribution of contact forces. To investigate 

this, some characteristic points were selected along the compression curve of the dense specimen 

consisting of “reference” grains. These points are shown in 45. Fig., with the main characteristics 

listed in 15. Table. Here, only those contact forces were regarded, where a parallel bond was not 

present in the contact, i.e. mainly between different macrograins and fragments. (Contact forces in 

cracks inside the grains are also contained. – The solution for this drawback is currently in 

development.) 

The contact force histograms are presented in 46. Fig. - 52. Fig., on a logarithmic horizontal axis. It is 

noteworthy that all the histograms are self-similar. During the “elastic stiffening” phase – Points 1-3 –

, the histogram’s peak moves to the right, which indicates an overall increase in contact forces. 

However, following clastic yielding between Points 3-5, the histograms “stay in place”, meaning that 

both magnitude and distribution of the contact forces stays constant. After clastic hardening, Points 

5-6, the contact forces increase again, shifting the histogram to the right, see 52. Fig. 

(Marketos & Bolton, 2007) also found self-similar contact force distributions, in a model without 

grain crushing. Their shape was different to those presented here, but there are significant 

differences not only in grain geometry, but also in the applied material/contact models. 
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45. Fig.: selected points along the compression curve of the dense specimen, with “reference” macrograins 

15. Table: selected points along the compression curve, with main characteristics 

Point 1 2 3 4 5 6 

At end of loadstep nr. 2 6 15 41 62 69 

σz [kPa] 27 112 1 286 3 733 10 304 40 412 

Core void ratio [-] 2.05 2.03 1.80 1.36 0.87 0.72 

Ratio of broken bonds [%] 0.014 0.077 1.35 18.5 48.4 80.3 

Nr. of contact forces 567 720 1 811 5 582 21 057 48 630 

Mode of distribution [N] 0.02 0.65 5 3.5 4 10 

Figure Nr. 46. Fig. 47. Fig. 48. Fig. 49. Fig. 50. Fig. 51. Fig. 

 
46. Fig.: Contact force histogram at Point 1. 
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47. Fig.: Contact force histogram at Point 2. 

 
48. Fig.: Contact force histogram at Point 3. 

 
49. Fig.: Contact force histogram at Point 4. 
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50. Fig.: Contact force histogram at Point 5. 

 
51. Fig.: Contact force histogram at Point 6. 



52 
 

 

52. Fig.: Contact force histograms at Points 1-6. 

5.3 Grain size distribution 
One of the toughest tasks in real compression tests is to track the evolution of the grain size 

distribution (GSD): for sieving, the sample is disintegrated, and if the compression test is continued 

after refilling the grains into the oedometer, the test conditions are different. One major advantage 

of the DEM is that information about the sample – including the GSD – may be gathered in “real 

time”, without disturbing the compression process. 

For tracking the grain size distribution during the compression phase, we have developed an 

algorithm that identifies particle clusters – that is groups of micrograins that are connected by 

parallel bonds. That enables the identification of intact macrograins, as well as detached fragments. 

After the cluster identification is complete, the grain diameter can be assigned to the particular 

cluster. The choice of a suitable diameter is not quite straightforward, and many different 

approaches are known in the literature. The main difficulty is to assign a single number (the grain 

diameter) to a 3-dimensional body, to capture both its size and shape. Since the fragments in the 

oedometer model are expected to deviate strongly from a spherical shape, the following – simplified 

– approach was applied to calculate the grain diameter: 

  √        
   (9)

 
where   ,    and     are the lengths of the particle along the x, y and z axes, respectively. Since the 

initial macrograins aren’t completely round, their diameters will show a slight variation according to 

Eq. (9). Therefore the calculated grain size distributions will not produce a complete match even for 

the initial and the limiting GSDs. 

The grain size distributions were recorded for Points 1-6 along the compression curve for the dense 

specimen with “reference” macrograins. The grain size distributions are shown in 53. Fig., while the 

positions of Points 1-6 are displayed in 45. Fig. The number of individual grains and fragments is 

given in 16. Table. 

1. 

2. 
3-5. 

6. 
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53. Fig.: Grain size distributions for the dense specimen with „reference” macrograins 

In 53. Fig., the calculated initial grain size distribution is represented by the black curve, while the 

limiting grain size distribution of the micrograins is shown in red. The blue curves represent the GSDs 

from the model, calculated by Eq. (9). As it can be expected from the ratio of broken bonds in 45. 

Fig., there is no significant change in the GSD up to Point 3. After clastic yielding, the GSD approaches 

the limiting distributions, and – as expected – the smaller grains are crushed first, and the larger 

grains remain intact until higher pressures. Such behaviour was both experienced in real tests 

(Chuhan, Kjeldstad, Bjørlykke, & Høeg, 2002), and explained by theoretical considerations (McDowell 

& Bolton, 1998, old.: 674). 

During and after clastic hardening, the grain size distribution approaches a limiting distribution. 

(McDowell, Bolton, & Robertson, 1996) argue that this limiting GSD is a fractal distribution, it was 

also proved experimentally e.g. by (Nakata, Hyodo, Hyde, Kato, & Murata, 2001) and (Lőrincz, és 

mtsai., 2005). One major drawback of the current model is that the limiting GSD is given by the size 

distribution of the micrograins, which is far from fractal, and permits a rather narrow range for 

possible GSDs. As seen in 53. Fig., the GSDs for Points 4-6 gradually approach this limiting GSD by 

“climbing up” on it. In contrast, they approach the fractal distribution in real tests by gradually 

“shifting to the left”, while retaining their starting point at S=100%. 

16. Table: Number of grains at the characteristic points (Points 1-6) along the compression curves 

Reference grains,     Point 1 2 3 4 5 6 

At end of loadstep nr. 2 6 15 41 62 69 

σz [kPa] 27 112 1 286 3 733 10 304 40 412 

Core void ratio [-] 2.05 2.03 1.80 1.36 0.87 0.72 

Ratio of broken bonds [%] 0.014 0.077 1.35 18.5 48.4 80.3 

Nr. of grains 285 313 775 5007 11 610 19 179 

 

Proper size effect,    Point 1 2 3 4 5 6 

At end of loadstep nr. 2 7 24 36 53 68 

σz [kPa] 18 159 1 841 2 751 3 834 26 981 

Core void ratio [-] 2.04 2.01 1.74 1.32 0.88 0.71 

Ratio of broken bonds [%] 1.26 9.88 20.9 30.3 47.1 85.0 

Nr. of grains 314 476 2 039 4 608 8 913 19 497 

1-3. 

4. 

5. 

6. 



54 
 

It’ known that the crushing strength of the individual grains has a major influence on the clastic yield 

stress. In section 3.5.6 it was found that using the same bond properties (bond strength, ratio of 

depleted bonds, etc.) for all grain sizes leads to a wrong size effect on grain strength: the smaller 

grains become weaker instead of getting stronger. (22. Fig.) To reach the proper size effect on 

strength for the initial grains, 0% of the bonds were depleted for the Dmacro=2mm grains, while 10% 

and 20% were depleted for the Dmacro=3mm and Dmacro=4mm grains, respectively. (32. Fig.) This 

results in a proper size effect on strength for the initial grains, but it is not clear how the strength of 

the fragments evolves. (Probably they get weaker, as in the “reference” case.) The oedometric 

compression test on the dense specimen, with the latter grains will be referred to as the “proper 

grain strength /PS” case. 

54. Fig. shows the compression curves and the ratio of broken bonds for the “proper grain strength” 

case. The dotted lines represent the corresponding curves from the compression test on the dense 

specimen with “reference” grains. The Points 1-6 along the compression curve were chosen similarly 

to those on 45. Fig. The number of individual grains and fragments is given in 16. Table, along with 

the main state characteristics of the specimen. 

 
54. Fig.: Compression curves for the dense specimen with „proper grain strength” 
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55. Fig.: Grain size distributions for the dense specimen with „proper grain strength” 

55. Fig. shows the grain size distributions for Points 1-6 of the “proper grain strength” model. The 

Corresponding curves from the “reference” model are included as thin, dashed lines.  Damage to the 

grains starts earlier, the GSD at Point 3 already contains some fragments from the Dmacro=2mm and 

3mm grains. At Point 4, the damage to Dmacro=3mm grains increases, and 4mm grains also experience 

damage – in contrast to the “reference” case. At Point 5, some 4mm macrograins are still intact, but 

the majority of the grains have undergone some splitting. Finally, at Point 6, the only difference 

between the “reference” and the “proper grain strength” cases is the damage to the Dmacro=4mm 

grains. Generally, the decreasing strength with increasing grain size is also evident from the GSD 

curves. 

5.4 Lower and higher bond strength, normal distribution of bond strength 
In section 3.4.3 it was found that the crushing strength of the individual macrograins is almost 

linearly dependent on the strength of the parallel bonds. Compression tests were also conducted on 

the dense specimen, with grains of double and half bond strengths, given in 6. Table. The 

compression curves are shown in 56. Fig., where “ref” denotes “reference” parallel bond strength, 

while HS and LS stand for “high bond strength” and “low bond strength”, respectively. 

1-2. 

6. 

5. 

4. 
3. 
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56. Fig.: Compression curves for the dense specimen, with grains of reference, high and low bond strengths 

The compression curves reflect the relation of the grain strengths: the “clastic hardening” parts of 

the curves are practically parallel, and the vertical stress for a given void ratio (overall or core) 

approximately follows the relation of grain strengths, i.e. it is approx. one half for the LS specimen 

and the double for the HS specimen, compared to the “reference” grains. The linearity is less clear 

due to considerable oscillation of the curves, caused by stress relaxation. This applies for the clastic 

yield stress as well, a smoothing procedure (e.g. fitting Bauer’s compression law) would provide 

clearer results. The initial parts – without grain crushing – are the same, and the 3 curves 

asymptotically approach the same limiting compression curve. 

The normal distribution of bond strengths was already examined at the level of single macrograin 

crushing tests in section 3.4.1, and it has been continued on the oedometric compression test-level. 

Normal distributions with ν=0.25 and ν=0.50 were applied to the bond strengths, to be compared 

with the ν=0 (uniform strengths, reference) case. The procedure is presented in detail in section 

3.4.1. The compression tests with the normally distributed bond strengths were carried out on both 

the loose and the dense specimen. The compression curves are shown in 57. Fig. - 59. Fig. 
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57. Fig.: Compression curves for the dense specimen, ν=0.25, ν=0.25, ν=0.50 

 
58. Fig.: Compression curves for the loose specimen, ν=0.25, ν=0.25, ν=0.50 
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59. Fig.: Compression curves of the “normal distribution” tests , ν=0.25, ν=0.25, ν=0.50 

When examining the datasets for the loose and the dense specimen separately, it can be seen that 

the compression curves share the same trace before clastic yielding and after the clastic hardening 

part. It was seen in section 3.4.1 that the normal distribution of bond strengths decreases the mean 

grain strength, the drop is roughly equal to the coefficient of variation ν. The same trend may be 

observed in 57. Fig. and 58. Fig.: the clastic hardening parts of the compression curves are parallel 

(share the same slope), but are shifted along the horizontal axis. They appear in ascending order with 

ascending mean grain strength. Although the curves show considerable oscillation, the trend is 

obvious both for the loose and the dense specimen. 

59. Fig. shows that the corresponding curves of the dense and loose specimen converge after clastic 

hardening, sharing the same limiting compression curve. Furthermore the slope of the clastic 

hardening part is steeper for higher initial void ratios. 

Similar results were obtained e.g. by (Nakata, Kato, Hyodo, Hyde, & Murata, 2001) in oedometric 

tests and by (Uygar & Doven, 2006) in cyclic triaxial tests on sand. 

5.5 Lateral stresses 
The lateral stresses – both σx and σy – were recorded throughout the compression phase for each 

specimen. It has been found that – within a small margin – σx = σy, and they are linearly dependent 

on σz. Hence the relation 

             (10) 

applies, where K0 is the well-known at-rest earth pressure coefficient, it can be estimated as the 

slope of the   (  ) plot. For the dense and loose specimen with “reference” grains, these are shown 

in 60. Fig. and 61. Fig. With linear regression, the following values were derived for the lateral stress 

coefficient: K0=0.42 for the dense specimen, and K0=0.46 for the loose specimen. Both curves are 
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bilinear, with the slight kink around 70 000 kPa. Notwithstanding this slight deviation from linearity, 

the coefficients of determination was R2>0.995 for each linear regression.

 

 
60. Fig.: Lateral stresses against vertical stress, for the dense specimen with reference macrograins 

 
61. Fig.: Lateral stresses against vertical stress, for the loose specimen with reference macrograins 

Given the linear relationship between vertical and lateral stresses, the stress argument 3ps in Bauer’s 

compression law may be expressed as 

              (      )      (11) 

That means that the difference between the e-lg(σz) and the e-lg(3ps) compression curves is only a 

shift along the horizontal axis by (1+2K0). 62. Fig. 
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62. Fig.: Compression curves for the dense specimen, void ratio against σz and 3ps 
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