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Discrete Element Analysis of the Minimum Thickness of Oval Masonry Domes
József Simona and Katalin Bagib
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ABSTRACT
This study focuses on domes the ground plan of which, instead of the more common circular
shape, is an oval, and aims at finding the minimally necessary uniform wall thickness for domes of
different geometries loaded by their selfweight. The discrete element code 3DEC was applied
because of its capability of simulating the collapse mechanisms of masonry structures. Results on
the minimal wall thickness, corresponding masonry volume and failure mechanisms for different
dome geometries are presented. Three ranges of the friction coefficient were found. For very low
frictional resistance collapse happens with pure frictional sliding, for any arbitrarily large wall
thickness. In the range of relatively high (i.e., realistic) friction coefficients the structure collapses
without any sliding if the wall is not sufficiently thick, and in the observed range of the friction
coefficient the necessary wall thickness is nearly insensitive to its value (collapse initiates with
hinging cracks only). Between the two domains an intermediate behavior was found: combined
cracking and sliding collapse modes occur for insufficient wall thickness, and the minimal thick-
ness strongly depends on the friction coefficient. The critical and transitional friction coefficients
separating the failure modes were determined for different eccentricities of the groundplan.
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1. Introduction

While mathematicians use the term “oval” in a very
general sense (e.g., Descartes or Cassini ovals, Lamé
ellipsoids; see for instance in Lawrence, 1972), in archi-
tecture an oval is usually understood as a closed, convex,
smooth curve having two axes of symmetry. A thorough
overview was given by Huerta (2007) on the history of
the application of oval shapes in different structural roles
in architecture from the first civilizations until the
Baroque. In this article, the role of ovals will be to
provide the ground plan of a dome.

Although most of the existing domes of our architec-
tural heritage have a circular plan, oval plans are more
common than they are usually thought to be. As empha-
sized by Huerta (2007), already in the Middle Ages hun-
dreds of Romanesque churches were built with oval plan
(Chappuis, 1976); then in the Renaissance and in the
Baroque the idea became even more popular and quickly
spread all over Europe. In spite of this, their mechanical
behavior (particularly the similarities to and differences
from spherical domes) is hardly analyzed and hence
poorly understood.

Masonry domes—similarly to masonry arches and
vaults—are constructions of separate voussoirs supporting

each other basically by compression and friction. Even if
some kind of mortar is applied in the joints, its tensile
strength is negligibly small compared to the compressive
strength of the bricks or stones, particularly in the case of
historical buildings with centuries or millennia old mortar
in the joints. The compressive strength of the voussoirs can
practically be considered infinite. (Of medium sandstone, a
2 km high column can be built without crushing at its base
due to its own weight. For granite this height is 10 km
according to Heyman, 2001, and even for different bricks
this height is hundreds of meters, while the height of exist-
ing masonry domes and vaults does not exceed a few
dozens of meters.) The frictional resistance is usually rather
high even for dry joints (the angle of friction is at least
approximately 30°–50°); indeed, sliding failure under static
loads is not characteristic for domes and vaults. Hence, the
basic question of the safety analysis of such a dome is
whether the structure with its given geometry is able to
equilibrate its self weight and perhaps certain live loads
without cracking collapse. This is a question of stability
rather than a problem of strength: “Equilibrium is achieved
by geometry” (Huerta, 2001).

Keeping these specific features in mind, Heyman
(1967, 1995) derived the minimal thickness of spherical
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domes (see Figure 1). The problem he solved can be
formulated as follows.

● Consider a spherical dome with a vertical axis of
symmetry, characterized by the angle φ shown in
Figure 1, with uniform thickness t.

● The material obeys the following basic assump-
tions (e.g., Boothby, 2001):
○ The blocks are perfectly rigid.
○ The blocks have infinite compressive strength.
○ The joints have infinite frictional resistance.
○ The joints have zero tensile strength.

● No translations are allowed at the supports at the
base of the dome.

● The aim is to find the smallest thickness, tmin, for
which the dome is still in equilibrium under its
own weight.

Heyman solved the problem using the Static Method
of plastic limit analysis (e.g., Heyman, 1995; Huerta,
2001), and for φ = 90° friction angle he found that this
minimal thickness is 0.042 times the radius of the
spherical surface.

Heyman made no distinction between the radii of the
intrados, extrados, and middle surface. Indeed, tmin is so
small in comparison with the radius of the dome that for
an engineer the difference may seem to be negligible.
Since in his derivations of the minimum thickness for
arches (e.g., Heyman, 1969) the radius was defined to be
measured to the center line of the arch, the same can be
assumed for his studies on domes, which is in agreement
with the usual convention in membrane theory where
the middle surface gives the basis of the calculations.
Consequently, the above value 0.042 is understood as the
ratio of the minimal wall thickness vs. the radius of the
middle surface.

An important improvement of Heyman’s result was
provided by Lau (2006), who, by combining membrane
theory with the Static Method and hence taking into
consideration hoop forces as well, received a slightly
different value, 0.041 times the radius in the case of a
hemispheral dome.

The safety of an analyzed dome can then be estimated
by using the “factor of geometrical safety”, invented also
by Heyman (1969), originally introduced for arches. This
factor compares the actual thickness of the structure to
theminimal thickness which can still carry its ownweight.
(When live loads have to be considered, the minimal
thickness belonging to the worst position of the loads
has to be found. However, the dominant load on a
dome is usually its self weight.) Although the assumption
of uniform thickness is not always realistic for existing
structures, even in these cases the geometrical factor of
safety provides an intuitive measure for the engineer of
how safe an actual structure is. The dome of the Roman
Pantheon has, for instance, a wall thickness varying from
top to bottom between about 5.5–30% of the radius; these
values are far above the necessary minimal thickness. The
thickness of the oval dome of the sanctuary of Vicoforte,
as another example, is significantly smaller (and does not
vary thismuch). Comparing to the equivalent groundplan
radius, i.e., to the radius of the circle having the same area
as the groundplan of the dome, the thickness is approxi-
mately 7–12% (Aoki et al., 2003). The knowledge of the
necessary minimum thickness helps the engineer in
appraising the safety of the structure. So the basic aim of
the present study was to extend Heyman’s problem to
domes with oval plans (see the applied restrictions on the
dome geometry in Section 2.1), and to find the minimal
thickness for those cases.

To provide a possible method for the analysis of oval
domes, Huerta (2010) called the attention on the trans-
formation theorem of Rankine: “If a structure of a
given figure have stability of position under a system
of forces represented by a given system of lines, then
will any structure, whose figure is a parallel projection
of that of the first structure, have stability of position
under a system of forces represented by the corre-
sponding projection of the first system of lines.” In
general, this theorem could be useful for predicting
the stability of an oval dome constructed by an affine
transformation from a spherical dome. Obviously, it is
not reliably applicable to the problem of the present
study for several reasons:

tmin

R

0,02

0,04

51,8°

60° 70° 80° 90° ϕ

ϕ
R

Figure 1. Minimal thickness for spherical domes, after Heyman (1967).
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● the plan composed of circular arcs is not an affine
transformation of a single circular plan;

● the “stability of friction” of the transformed struc-
tures is not ensured by the theorem, i.e., the forces on
the joints between individual blocks may or may not
be inside the friction cone independently of the sta-
bility of friction of the original spherical dome; and

● the uniform thickness of a spherical dome would
be distorted by an affine transformation.

Different recent numerical methods can be found in
the literature to solve the problem of minimal wall
thickness. The most important approaches are shortly
overviewed below.

→ 3D Thrust Network Analysis (TNA, see Block
and Ochsendorf 2007) and its extension in Block and
Lachauer (2014) are based on the Static Theorem of
Heyman’s classical theory of masonry structures. The
method applies three-dimensional graphic statics to
find a thrust surface. The power of this method is
convincingly demonstrated by Block et al. (2010) with
the help of 3D-printed structural models. (Its disadvan-
tage is that the possibility of sliding is not excluded
with sufficient safety.)

→ With an improvement over membrane theory by
allowing hoop and meridional forces to deviate from
the middle surface, an iterative computation is used by
Zessin et al. (2010) to analyze cracked masonry domes.

→ D’Ayala and Casapulla (2001) derived a proof
that under a symmetry requirement for the loads, slid-
ing mechanisms may be included in the limit state
analysis of masonry domes without loss of uniqueness.
A lower-bound computer method is proposed by the
authors who apply their method for Heyman’s problem
extended to the effect of different friction coefficients in
the joints. An interesting result is that if the friction
coefficient is between 0.12 – 0.7, the minimal thickness
can be smaller than derived by Heyman. Based on the
success of the method, D’Ayala and Tomasoni (2011)
presented a computational procedure and convincingly
apply it for pavilion vaults, also giving a comparison to
FEM results. The method has the potential to analyze
problems with general loads and constraints, recognize
sliding as well as hinging collapse mechanisms, and
incorporate the three-dimensional effects for a wide
range of vault types.

→ Another alternative tool which is also capable of
modeling 3D effects and frictional sliding is the
Discrete Element Method. This numerical technique
was first introduced for the simulation of fractured
rocks by Cundall (1971), and has been applied in the
engineering practice approximately from the 1990s,
when computer hardware became powerful enough to

simulate realistic problems on average PCs. A discrete
element model considers the structure to be a collection
of separate blocks, “discrete elements,” each of which is
able to move and—in most software—to deform inde-
pendently of each other. The blocks may come into
contact with each other, where distributed forces can
be transmitted from one block to another, causing
stresses and deformations in the blocks. According to
the criteria formulated by Cundall and Hart (1992), a
numerical technique is a discrete element model if (1)
the elements are able for finite (i.e., large) translations
and rotations; and (2) complete detachment as well as
formulation of new contacts are allowed and automa-
tically followed.

The second criterion means two important differ-
ences from FEM: there are no continuity conditions at
the common points of the contacting elements, and the
elements are continuously checked throughout the cal-
culations whether they get into contact with each other.

The large displacements are usually followed with the
help of some kind of a time-stepping scheme: most
DEM codes determine the characteristic motions of the
analyzed system along a series of small but finite time
intervals, applying Newton’s laws of motion. Using
DEM, a simulated structure may split into pieces (e.g.,
a vault may fall into masonry voussoirs) which may even
bounce into each other on the ground forming a heap
balanced under its own weight. There are innumerable
different versions of discrete element techniques—the
elements may be rigid or deformable, spherical, polyhe-
dral, or irregular, the time integration may be explicit or
implicit, or may be replaced by a quasi-static method,
etc. A helpful introduction is given by O’Sullivan (2011)
on the most important techniques. (A particular value of
this book is that the issue of numerical stability, which is
particularly important in the stability analysis of
masonry vaults and domes, is discussed in detail.) An
excellent overview is given by Lemos (2007) on the
different mathematical and practical approaches to
simulate masonry structures with the help of DEM,
including practical engineering applications as well.
The method has been successfully applied in practice-
inspired investigations like Alexakis and Makris (2013)
or Isfeld and Shrive (2015). In relation to the subject of
the present paper, the study of Rizzi et al. (2014) has to
be referred to in which the authors successfully apply the
method for the analysis of the Couplet-Heyman pro-
blem, taking into account the effect of the frictional
resistance between voussoirs.

Despite the few doubts regarding its usage (e.g.,
Huerta 2008), the capability to simulate block separa-
tion and contact sliding makes a suitably chosen and
carefully calibrated DEM model a powerful tool for

INTERNATIONAL JOURNAL OF ARCHITECTURAL HERITAGE 459

D
ow

nl
oa

de
d 

by
 [

81
.1

83
.7

8.
14

7]
 a

t 0
3:

00
 2

8 
M

ay
 2

01
6 



the collapse analysis of masonry structures. Because
of its ability to follow frictional sliding, failure pro-
cesses and collapse histories in detail, DEM has been
the basic tool of the investigations of the authors
related to different masonry mechanics problems,
including the subject of the present paper. Details
of the applied numerical technique are introduced
in Section 3. It has to be emphasized that the
model verification and within this the careful calibra-
tion of model parameters is a crucial issue in DEM
modeling; this is why Section 3 puts a particularly
strong emphasize on the question.

Before turning to the details of the analysis, two
important aspects regarding Heyman’s problem have
to be underlined. First, Heyman assumed fixed sup-
ports under the domes. In reality, the supports always
move: deformations of the underlying walls, soil sink-
ing, etc. are inevitable. As a result, the masonry dome—
whose voussoirs have only rather low if not negligible
deformability—adjusts itself to the new position of the
supports by cracking leading to the rearrangement of
the internal force system. Consequently, the limit thick-
ness for a dome with deforming supports will differ
from Heyman’s solution for the same dome. The ana-
lysis of the effect of support flexibility is out of the
scope of the present study; it is left for further research
and the present study is restricted to the original pro-
blem with fixed supports. However, sliding between the
dome blocks and the fixed supports is allowed accord-
ing to the Coulomb model.

Second, in reality the voussoirs are never infinitely
rigid, so if the dome is built with the help of centering,
a slight deformation always occurs at de-centering,
hence modifying the shape of the dome. This effect
may also lead to deviations of the minimal thickness
from that of Heyman. In the DEM investigations the
deformability of the voussoirs was not taken into
account: the blocks were perfectly rigid, and the numer-
ical control parameters of the model were carefully
verified to match the result of Heyman’s value for
orange-sliced hemispheral domes. This calibrated
model was then used for the simulation of oval domes.

This article is organized as follows. The analyzed
geometries are specified in Section 2. Section 3
describes the most important characteristics of the uti-
lized discrete element code (3DEC), and introduces the
calibration tests which were done to ensure the relia-
bility of the results; these numerical experiences may be
helpful for researchers simulating other types of
masonry vaults and domes with the help of DEM.
The simulation results on oval domes are presented
and discussed in Section 4. Finally, the most important
conclusions are summarized in Section 5.

2. Preparation of the model geometry

2.1. Definition of the ground plan

The aim of this section is to introduce the mathematical
definition of the ovals serving as plans for the domes to
be analyzed. The most important versions, i.e., the
Egyptian oval and its generalized versions which were
applied in the present study, are described here in
detail; other ovals being out of the scope of the present
article are only shortly mentioned.

The Egyptian oval is based on a right-angled triangle
whose sides are 3, 4, and 5 units. The quarter of the
oval can be drawn, as shown in Figure 2, with the help
of two pegs fixed at points A and B, and with an 8-unit
long string whose beginning point is attached to the
peg at point A.

Starting from point A’, draw a circular arc (with 8-unit
radius) by moving the endpoint of the string upwards,
until the string is stopped by the peg at point B. The end of
the string is now at point C. Continue moving this end-
point of the string further upwards; because of the peg at
B, the radius of this new arc (from C to D) is only 3 units.
The two arcs drawn this way will have a common tangent
at point C, so the curve is smooth The rest of the oval can
be prepared in the same way.

Right-angled triangles with other side ratios can also be
applied as the basis of an oval: different generalized
Egyptian ovals can be received this way. Figure 3a shows
that applying a right triangle with catheti a and b, and a
string of length l = 2a, a similar oval will be produced
whose arcs have the radii l ¼ 2a and r ¼ 2a� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

.
Obviously, since a and b have to satisfy the relation

a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

� 2a;

the length b must be

0 � b � a
ffiffiffi

3
p

:

AA'

B

C

D

a = 4 a = 4

b = 3

Figure 2. The Egyptian oval.
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The case b → 0 means that the oval degenerates into
a circle with a radius a (Figure 3b). The other extreme,
i.e., b ! a

ffiffiffi

3
p

; gives the greatest possible deviation
from the circle, however, this is not a smooth curve
any more (Figure 3c), so this extreme cannot be con-
sidered as an oval. (The analyzed groundplans in
Section 4 varied between these two extremes.)

The deviation from the circle can be characterized by
the eccentricity angle β shown in Figure 3a: β = 0
corresponds to the circle, while the other extreme is
β = 60° (Figure 3c) for which the smaller radius r
vanishes.

The groundplans of all domes analyzed in the pre-
sent paper were generalized Egyptian ovals. The area of
the plan was the same in all cases, while they differed in
their eccentricity angle β. The aim was to investigate
the effect of the deviation from the circle on the mini-
mal thickness of the dome.

Ovals can be constructed in several other ways. One
possibility—often seen in Gothic architecture—is to
place the basic point A outside the curve (see
Figure 4). Such a solution was applied in certain histor-
ical structures (see Huerta (2007) citing, e.g., Koepf
(1969), Bucher (1972), or Vandelvira (1580)). Other

possibilities arise when more than two different arcs
are used to compose the oval; or different construction
methods of ellipses are applied, etc. However, the pre-
sent investigation is restricted to the most prevalent
versions, i.e., the generalized Egyptian ovals only.

2.2. The surface of the intrados

After drawing the groundplan, the builders of a dome
had to define the 3D geometry of the internal surface
(“intrados”) in order to prepare the centering for the
voussoirs, or—in case the dome was to be built without
centering—a light guiding scaffold to prescribe the
geometry of the intrados. According to Huerta (2007),
the most common solution was to define the intrados
as a surface of revolution, being rotated either about the
longer axis of symmetry of the plan (e.g., San Andrea
del Quirinale), or about the short axis (e.g., Cesarean
Library in Vienna). In the present study both possibi-
lities were considered (see Figure 5): the first option
will be referred to as Type 1 surface (“flat” domes),
while Type 2 will denote the second option (“high”
domes).

2.3. The complete dome

Now the 3D body of the dome is, in principle, easy to
define mathematically: from every point of the intrados,
perpendicularly to the surface, the uniform thickness
has to be measured outwards, to receive the points of
the extrados. In the DEM simulations the task is more
complicated: the continuous domain between the intra-
dos and extrados has to be constructed as a collection
of 3D brick-like discrete elements the length, l, and
height, h, of which are aimed to be approximately
equal along the complete dome, and their thickness t
to be uniform. This was achieved in the 3DEC models
in the following way.

(a) (b) (c)

aa
l

AC A'≡

D

B
a

b

a

l

r B

AA'

C

D

a

b

a

l

C B≡

AA'

Figure 3. (a) The generalized Egyptian oval; (b) the extreme case β = 0°; and (c) the extreme case β = 60°.

AA'

C

D

B

b

aa

l

r

Figure 4. Oval with A positioned outside the curve.
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Since the intrados is a surface of revolution, its
sections perpendicular to the axis of revolution are
circular arcs. The composition of the discretized
model of a dome starts by considering the circular arc
with the largest radius perpendicular to the axis of
rotation. This arc is shown in Figure 6. Obviously,
Rint is the half of the other axis of the plan being
perpendicular to the axis of revolution. Measure the
desired brick height, h, starting from the lowest point
of the arc proceeding upwards as many times as
wanted. (An opening for an oculus may be left out at
the top in the model, while if such a hole is not desired,
the small domain, where a full brick height cannot be
placed, will be filled at the end of the construction
procedure by a single closing element.) Through each
point received this way (see the dark dots in Figure 6),
imagine a horizontal cutting plane. The intersection of
the i-th plane with the intrados will serve as the i-th
“master curve,” i.e., the basis of preparing the i-th
horizontal ring of discrete elements. (Note that the
master curves are not similar to each other.)

Figure 7 shows how the inner-lower sides of the
elements are placed along the master curve. The pro-
cess starts at a randomly chosen point, P1. The brick
length, l, should be measured along the curve, as many
times as possible. However, this way the master curve is
not followed smoothly by the brick elements, and it

may lead to sharp corners particularly in those parts of
the dome where the curvatures are high. Thus, the
curvature of the master curve is taken into account in
the algorithm by dynamically changing the brick length
along the curve as shown in Figure 7 (imitating a
mason who uses smaller stones for the strongly curved
parts of the structure). Finally, truncated or elongated
lengths are applied to close the ring, similarly to real
masonry constructions.

The k-th discrete element of the ring is formed with the
help of its two already existing nodes, Pk and Pk+1. By
measuring the uniform thickness perpendicularly to the
intrados in the outwards direction, two additional nodes
are received. The intersection of the plane being perpen-
dicular to the master curve in point Pk with the i+1-th
master curve and a similar intersection point of the per-
pendicular plane at Pk+1 with the i+1-th master curve will
give two more nodes. From these two new nodes the
thickness is measured outwards again to get the two
missing nodes of the k-th element. (Note that the angles
determined by the edges of such an element slightly
deviate from being perpendicular.) After finishing the
ring, a next layer can be prepared in a similar manner.

Since the master curve is horizontal and the top faces
of the blocks forming a ring are determined by the out-
wards normal vector sweeping along the master curve, the
union of the top faces is not planar. Consequently, in a

h

h

h

1.

2.

. . . .
i

i+1.

h

Rint

Figure 6. Largest vertical cross-section perpendicularly to the axis
of rotation: definition of the vertical positions of the master curves.

Figure 5. The intrados as a surface of revolution: (a) about the longer axis, Type 1 (flat) dome; and (b) about the shorter axis, Type 2
(high) dome.

Figure 7. Horizontal view: The i-th master curve, with dynami-
cally shortening brick lengths where the curvature is large.
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mathematical sense, the bottom corners of the next ring of
blocks do not perfectly fit to the top of the blocks below
them. However, the discrepancy was found to be negligi-
ble for those dimensions applied in the simulations, near
the range of numerical rounding errors, hence it did not
make any mechanical effect.

Similarly to real masonry structures, truncated or
slightly elongated elements are applied not only to
close the horizontal rings of voussoirs but also to
avoid having interstices just above each other.

Figure 8 shows two geometrical models constructed
in the above manner: a generalized Egyptian oval with
β = 50° is applied to generate a Type 1 and a Type 2
dome.

Finally, a remark has to be made on the issue of
using uniform thickness in the applied geometrical
models. In many real domes, especially of largish
radius, the thickness is not uniform along the meridian:
smaller around the top and larger near the bottom. This
change in thickness results in a specific distribution of
loads along the meridian, and can make the dome more
stable. Consequently, the results in this article can be
considered as a conservative approximation of the
behavior of domes with varying thickness.

3. Numerical modeling issues

3.1. 3DEC

The commercial DEM code 3DEC was applied in the
simulations. UDEC (“Universal Distinct Element
Code”), the 2D ancestor of 3DEC, was originally devel-
oped for the modeling of fractured rocks (Cundall, 1971),
but today its 2D and 3D versions are widely used in the
engineering practice also for masonry structures.

The discrete elements in 3DEC may have any poly-
hedral shape, and may either be perfectly rigid, or they
can be made deformable in such a way that they are

divided into simplexes (tetrahedra in 3D) which serve
as uniform-strain finite elements. This article applied
perfectly rigid elements. In this case each rigid element
has a reference point whose displacements (translations
and rotations) during a small finite Δt time interval are
determined with the help of Newton’s laws of motion,
taking into consideration the inertia of the whole ele-
ment. Forces acting on the elements may be either
external loads or exerted by the neighboring elements
through the joints. The mechanical model of the joint
behavior is a crucial issue, and will be discussed in
Section 3.2 in detail. An explicit time integration
scheme, based on central differences, is used for simu-
lating the mechanical behavior (motions, changes of
contact forces, etc.) over time: the simulation of the
state changing under a given loading process is
achieved by step-by-step calculation of the motions of
the reference points.

3.2. Calibration: Simulations of spherical domes

3.2.1. Introductory remarks
The key of composing a reliable discrete element model
for a structure is the careful calibration of the model
properties, i.e., the necessary numerical parameters as
well as those controlling the numerical time integration,
method of loading, boundary conditions, etc. The model
properties in the present study were calibrated with the
help of the analysis of Heyman’s original problem, i.e., a
hemispherical dome being cut into orange-slice-like par-
titions (see Figure 9). The following characteristics had
to be suitably set so that the minimal wall thickness
would be the same as that of Heyman:

(i) Contact parameters. The contacts in all simula-
tions were frictional which means that the follow-
ing three contact parameters had to be chosen
properly. The normal stiffness (“penalty

Figure 8. Discrete element model of the geometry of: (a) a Type 1 and (b) a Type 2 dome based on a generalized Egyptian oval (β=50°).
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stiffness,” kN) expresses how difficult it is to press
the boundary point of an element into the inter-
ior of its neighbor: it is the intensity of the dis-
tributed compression force occurring at unit
depth of the penetration between the two ele-
ments. The second parameter, the shear stiffness
of the contact, ensures that when a slight relative
displacement increment occurs in the tangential
direction between two blocks, a tangential force
—equal to the displacement increment times the
tangential stiffness—arises in the opposite direc-
tion, and prevents the contact from unrestricted
sliding. The third parameter is the coefficient of
the classical Coulomb-friction.
The joints between the elements in a DEM model
may have different physical meanings. The joints
may represent some kind of mortar layer (or, e.g.,
clay layer in fractured rocks) having a finite thick-
ness in reality between deformable blocks repre-
senting the voussoirs. If using perfectly rigid
discrete elements (like in the present study), the
joints in the model should also reflect the deform-
ability of the voussoirs: in this case the material
parameters of the joints express the total deform-
ability of the blocks–and–joints system, therefore a
normal and a tangential stiffness have to be prop-
erly verified along with either some fracture criteria
(normal and shear strength) and/or a friction coef-
ficient in order to define the conditions when the
joints fail. In the present study the friction coeffi-
cient gave the only limit for the failure of the
contact, and no fracture criteria were applied.
Note that for dry joints between blocks having
irregular (nonsmooth) surfaces the material para-
meters of the joints should also include the possi-
bility of the contacting blocks to get closer to each
other under large pressure and to resist tangential
relative translation due to the shear resistance of
the small irregularities on the contact surface.
Since these phenomena related to nonsmooth

surfaces are too complex, their quantitative analy-
sis was not considered in the present study.
From a computational point of view, the larger are
the applied contact stiffnesses in amodel, the smal-
ler is themaximally allowed time step in the explicit
solver, so the calculations become more time-con-
suming with increasing stiffnesses. On the other
hand, too low stiffnesses may lead to unrealistic
results: the contacting voussoirs may significantly
penetrate into each other leading to a global
mechanical behavior similar to a collection of soft
blocks, and may even cause the numerical collapse
of the simulations, while a rigid-block system with
increasing stiffness tends to the theoretical model
of Heyman’s classical theory. So in the calibration
tests special attentionwas paid to find the regime of
contact penalty parameters for which the behavior
is already acceptable regarding convergence to
Heyman’s classical results to the accuracy intended
to reach. The results were then compared to mor-
tared joints with realistic elastic characteristics.
These tests are introduced in Section 3.2.2. The
second parameter, the tangential stiffness, kS, was
chosen to be 1/10 of the normal stiffness.
The third parameter, the friction coefficient (f),
should be infinitely large according to Heyman’s
conditions. In the calibration tests where the aim
was to reproduce Heyman’s results the friction
angle was indeed set to 90°.
After the calibration tests, in the analysis of oval
domes in Section 4, Coulomb friction with f = 0.7
was applied first. Then coefficients ranging from
0.3–0.7 were considered to carry out sensitivity
analysis regarding the contact properties. Finally,
friction coefficient was decreased further, with
very small steps (determining the minimal wall
thickness for each value), to find that value for
every intrados where the purely hinging collapse
mechanism turned into a combined hinging-slid-
ing mode for insufficient wall thickness, and that

Figure 9. Calibration of the element size: (a) The analyzed densities; (b) collapse of a 50-segment spherical dome (colors indicate
displacement magnitude).
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value where the mixed collapse mechanism turned
into pure sliding failure mode so that the structure
was unable to equilibrate its weight with any wall
thickness.

(ii) Element size. The elements in a DEM model
may either directly correspond to the individual
voussoirs, or each element models a collection of
several bricks or stones. While the computa-
tional time decreases with the decreasing num-
ber of elements, due to the bending resistance of
the individual blocks the overall load bearing
capacity of the structure may be overestimated
if the subdivision is not dense enough. So it was
also an open modeling issue how densely a
dome should be divided into discrete elements.
Section 3.2.2 deals with this question as well.

(iii) Loading technique: method of de-centering. In a
DEM simulation the gravity can either be
“switched on” in a single step (as if dropping the
self weight suddenly on the whole structure), or
the structure can initially be fixed at all nodes
while the gravity is already acting and then the
nodes are gradually released, starting from the top
and proceeding downward in several steps, finding
the equilibrium in each step before releasing the
next set of nodes (as if decentering a real dome).
With a series of calibration tests it was checked
whether the difference in the loading technique
made an influence on the results. Details will be
given in Section 3.2.3.

(iv) Parameters controlling the numerical time
integration. Since the basis of the present
study was to check whether different domes
with given geometries can find their equilibrium
state without collapse (hence the exact history of
how the blocks find their equilibrium position is
unimportant), in all tests the 3DEC default para-
meters for static analysis were applied: “auto”
damping with a coefficient of 50% (half of the
change of kinetic energy was dissipated in each
time step), and the time step length offered
automatically by 3DEC was accepted (see Itasca
(2007) or Cundall (1982) for detailed explana-
tions). Note that these parameters would not be
suitable when simulating a dynamic process,
e.g., earthquake analysis.

(v) Boundary conditions. The lowest elements of
the domes were supported from below by a ring
of perfectly fixed elements having the same con-
tact parameters as those blocks forming the
domes. So the lowest voussoirs of the domes
had an elastic–frictional, Coulomb-type contact
with this “foundation”.

3.2.2 Calibration of the element size and the contact
normal stiffness
Figure 9a illustrates the analyzed geometries: the dis-
crete elements were defined by slicing the dome volume
by dividing its base perimeter into 10, 20, . . ., 50 sec-
tions, and applying the same density of discretization
for each slice. Note that the vertical interstices between
the elements are just above each other in the calibration
tests, corresponding to the slicing technique presented
by Heyman. This very special arrangement was applied
only in the calibration tests where Heyman’s theoretical
prediction was intended to reach; then in the simula-
tions in Section 4 the vertical joints between stone
blocks were always shifted with respect to each other.

For each geometry shown in Figure 9a, a sequence of
different penalty stiffnesses was tried, and the minimally
necessary wall thickness was determined for each penalty
stiffness in the following way. For a given middle sur-
face, kN and density of subdivision, several different
domes were prepared which differed only in their wall
thickness. Unlike in the simulations of oval domes
(whose geometry were prepared according to the
method explained in Section 2), for the calibration tests
the middle surface of all domes was the same hemi-
sphere with unit radius R, in order to follow Heyman’s
analysis as closely as possible. Half of the thickness was
measured outward and the other half was measured
inwards along the normal vector of the middle surface.
The applied thicknesses differed by 0.1% of the middle
radius, e.g., t = 0.039 R, 0.040 R, 0.041 R, etc. were
applied. Then for every case the selfweight was put on
the dome, time stepping was started, and continued until
either collapse or finding a balanced state. The collapse
was recognized by monitoring the vertical displacements
of the closing element on the top of the structure. If this
displacement was greater than 5% of the height of the
dome, collapse was recognized and the simulation
stopped. On the other hand, balanced state was validated
by checking the displacement and velocity of the closing
element on the top of the dome and also the unbalanced
forces in the system. The balanced state was assured
under the following condition: the displacement, velocity
and unbalanced force had to be lower than 10−6 m, 10−7

m/s and 10−5 N, respectively. To illustrate this, Figure 9b
shows the collapse mechanism for the 50-segment dome
with a thickness slightly under the critical value: the
perfectly axisymmetric geometry of the collapse mechan-
ism can clearly be observed.

Finally, the smallest thickness for which the dome
did not collapse was selected; this thickness is shown
on the vertical axis of Figure 10. The thickness is
normalized with the radius of the middle surface R.
The results show that as the contact stiffness and
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subdivision density increase, the minimal thickness
tends to Heyman’s prediction. The stiffness value kN
= 1011 – 1012 N/m3 and subdivision of the perimeter
into 30 sections (brick length l = 0.209 R) are already
sufficient to get a good agreement with Heyman’s
result: the minimal thickness for which the domes
did not collapse approached 0.042 times the radius of
the middle surface. Based on this, the characteristic
length of the bricks applied in the simulations in
Section 4 were around 40 cm (l = 0.08 R), which is
close to realistic sizes, and definitely smaller than
what would be necessary to capture Heyman’s result
on minimal wall thickness of spherical domes.

Real contacts and real voussoirs have finite stiff-
nesses, consequently according to the results shown in
Figure 10, real domes require bigger thickness to be
stable than predicted by Heyman’s rigid block theory.
However, the results also show that if the subdivision is
dense enough (i.e. the perimeter is subdivided into at
least 30 elements), then for kN being above 2 GPa/m the
minimal wall thickness does not significantly differ
from Heyman’s prediction: it remains under 105% of
the theoretical value, and decreases with increasing kN.
For kN being above 10 GPa the difference is negligible.
So the question is what is the realistic range of joint
stiffness. To approximate this range, consider two
blocks shown in Figure 11a, both having the same
thickness lb = 0.40 m, and a mortar layer of lm =
1.5 cm (the two contact surfaces have unit area).
Assuming unrestricted crosswise extension, the kN
joint stiffness of the equivalent rigid block—deformable
joint—rigid block system is

kN ¼ EbEm
lbEm þ Eblm

;

where Eb and Em denote the Young-modulus of the
block and the mortar respectively. Typical Young-
moduli Eb are between 5 GPa (shale or mudstone)
and 100 GPa (exceptionally stiff marble or granite).
For mortar Em = 1 – 5 GPa can be estimated. The
equivalent joint stiffness for the very small values Eb =
5 GPa and Em = 1 GPa becomes kN = 10,53 GPa/m for
which the minimal wall thickness is 102% of
Heyman’s prediction; for more realistic Young moduli
the equivalent joint stiffness is an order of magnitude
higher so the deviation from Heyman’s prediction is
negligible. (For instance, for marble and a stronger
mortar, Eb = 50 GPa and Em = 2 GPa, the equivalent
stiffness becomes kN = 64,52 GPa/m, for which
Figure 10 shows that the deviation from Heyman’s
prediction is negligible.) Note that for restricted cross-
wise deformations the equivalent stiffness becomes
higher because of the Poisson-effect, and dry contacts
can probably be approximated with even higher kN
than mortared joints, around 1011–1012 Pa/m.
Similar values for kN were also found in discrete ele-
ment simulations of two deformable blocks with a
third discrete element between them representing a
mortar layer between the two voussoirs, submitted to
compression as shown in Figure 11b. Different
Young-moduli, Poisson ratios, and friction coeffi-
cients were tried for both unrestricted and restricted
crosswise deformations. The simulation results con-
firmed the above values for kN.

3.2.3. The role of the loading method
Construction with centering was simulated and tested in
the following way. Two spherical domes were prepared
with the same intrados and a chosen thickness (the
arrangement of the discrete elements was realistic now,
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Figure 10. Dependence of the minimal wall thickness on the density of subdivision and on the contact penalty stiffness for
orange-slice-like spherical domes.
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i.e., the elements were of the same size apart from those
few which had to be truncated, so that the interstices were
not above each other). At the beginning, the gravity was
already acting while all nodes of the elements were still
fixed against translations. Then in the first case the ele-
ments were gradually released starting from the top of the
dome and proceeding downwards, as if removing a cen-
tering, in ten consecutive steps. The structure was equili-
brated after every step. For the other dome the whole
centering was removed (all the elements were released)
in one single step. Using the same intrados with several
different wall thicknesses, the minimally necessary thick-
ness was then determined for each case in the same
manner as explained in Section 3.2.2.

The results on the minimal thickness showed no
noticeable differences between the different de-centering
techniques. So the simplest possible technique can reliably
be used in the computer simulations, hence the rest of the
tests were done by decentering the domes in a single step.
It is important to emphasize, however, that this statement

has been checked only for the loading case which is
relevant for the present study, i.e., only for pure self-
weight. In other problems where the effect of a gradually
increasing live load is analyzed special attention has to be
paid if an adaptive global damping technique is used: the
damping parameter has to be returned to the original high
value before a new load increment is applied.

4. Simulation results

4.1. The analyzed domes

The applied ground plans are shown in Figure 12; their
deviation from the perfect circle is quantified with the
help of the eccentricity angle β (see Section 2.1). All
ground plans had equal internal area, the same as that
of a circle with a 5 m radius (i.e., the equivalent inner
radius, Req, was 5 m for each oval). (Note that the ratio
of minimal thickness to inner radius does not depend
on the actual radius size, except that the penalty

(a) (b)

Block Mortar Block

reference points of the blocks

lb lm lb

Figure 11. Mortared joint between deformable blocks: (a) geometry of the block – joint – block system; and (b) the system
submitted to compression.

(a) (b) (c) (d) 

(e) (f) (g) 

(a)  ;  (b)  ;  (c)  ; (d) ;  (e) ; (f) ; (g)  

Figure 12. Ground plans of the analyzed domes.
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stiffness should be recalibrated if the size of the dome
(thus the internal forces) change with orders of magni-
tude in comparison to the calibrated model.)

Rotating each groundplan about its longer or shorter
axis of symmetry, a Type 1 or a Type 2 intrados was
received, respectively. Then—according to the method
described in Section 2.3—several complete domes were
constructed for each intrados, differing in their wall
thicknesses but covering the same net area. (This
means that the area of the groundplan defined by the
intrados was the same in every model, but the equiva-
lent radius of the middle surface also increased with the
thickness.) The characteristic lengths for the definition
of the elements were

l = 0.40 m
h = 0.40 m
and the thickness, t, was changed from simulation to

simulation in steps of 0.1% of the equivalent inner
radius Req.

For every geometry the material density 2500 kg/m3

and the usual gravitational acceleration, 9.81 m/sec2

was applied in the calculation of the weight of the
blocks. The same contact characteristics were used in
every model: normal stiffness kN = 1012 N/m3, tangen-
tial stiffness kS = 1011N/m3.

4.2. Results for f = 0.7 friction coefficient

Since most of the constructional stones and bricks
have at least or about this frictional capacity, for
every intrados the minimal wall thickness was first
determined for 35° friction angle (0.7 friction coeffi-
cient). Figure 13 summarizes the most important
results. The horizontal axis measures the eccentricity
with the angle β: the deviation from the circle

increases from left to right. The vertical axis shows
the minimally necessary thickness, tmin, normalized by
Req, and expressed in [%].

In the case of a circular ground plan and rigid ele-
ments tmin = 0.037 R was received, smaller than the value
0.041 found by Lau (2006) by taking into account hoop
resistance. The result naturally differed from the out-
come of the calibration tests and Heyman’s result: those
domes in the calibration and in Heyman’s derivation
had an orange-slice structure, while the analysis in
Section 4 was based on realistically, irregularly arranged
voussoirs where the frictional resistance on the horizon-
tal contact surfaces and the tension resistance of the
individual blocks provided a hoop resistance. This is
explained in Figure 14: the separation of the two blocks
in the middle ring is encumbered by the frictional forces
expressed by the upper and lower blocks. A possible
explanation of the deviation from Lau (2006) is sug-
gested by the characteristic collapse mode shown in
Figure 10 for the orange-slice-like arrangements and
also found for the realistically placed voussoirs. Unlike
in the case of the continuum model applied by Lau
(2006), in a DEM model the tangential stiffness kS is
finite so the elements may slightly translate elastically
along each other in the plane of the contact, even with-
out frictional sliding. The typical collapse mechanism of
a hemisphere includes that the lowest part of the dome
rotates outwards about the external perimeter of the
groundplan (again, see Figure 10). A slight outwards
translation of the lowest blocks shifts this external sup-
porting ring of hinges into a more favorable position,
and contributes to the resistance against collapse.

The results in Figure 13 show that with significant devia-
tions from the spherical shape, the minimum thickness
differs only 25% of the value required for a hemispheral
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Figure 13. The necessary minimal wall thickness normalized by the equivalent radius (expressed in %) as the function of the
eccentricity of the groundplan.
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dome with the same net groundplan area in case of Type 1
(flat) domes, but this difference can be as high as 50% if the
results of the Type 2 (high) domes are considered.

Type 2 (“high”) geometry appears to be more
favourable from mechanical point of view than a sphe-
rical intrados: apart from the range of nearly circular
ground plans, smaller wall thickness is sufficient to
balance the own weight of the structure. This is not
the case for the Type 1 geometries: the necessary wall
thickness is greater for oval ground plans than for a
spherical dome except for domes with very high eccen-
tricity. This difference may be explained by the fact that
in case of Type 2 geometries the longitudinal cross
sections are half-circles and the transverse cross-sec-
tions are vertically elongated ovals (somewhat resem-
bling to a pointed arch); for Type 1 geometries the
transverse cross sections are the half-circles and the
longitudinal cross-sections are horizontally elongated
ovals whose resistance against the self weight is poorer.

Figure 15 shows the total volume of the elements
assuming that the minimal wall thickness is applied
everywhere. The horizontal axis measures the eccentri-
city β again. For medium to large eccentricities (β =

20°–55°) Type 2 domes are more favourable in the
sense that they require less building material than
either the spherical or the Type 1 domes; however, in
the case of extreme eccentricity (β = 60°) Type 1 domes
need the smaller amount of masonry.

It is interesting to compare how the Type 1 and
Type 2 domes collapse if their wall thickness is too
small. For low eccentricities the collapse mechanisms
are similar to that of a hemisphere (see Figures 16a and
16b): two intermediate rings of hinges form the lower
of which moving outward, the upper moving inward.
The rings are not perfectly horizontal: in all cases they
slightly descend towards the two ends of the longer
axis. As the eccentricity increases, a characteristic dif-
ference can be noticed between the collapse mechan-
isms. A Type 1 dome is a flat, elongated structure: in
this case the rings of hinges deviate more and more
from the horizontal plane with increasing eccentricity,
and a kind of bulge can be noticed where the outwards
ring approaches the base level near the narrow ends of
the oval base (see Figure 17a). The collapse of Type 2
domes with large eccentricities happens in nearly the
same way (Figure 17b), the only difference is that since
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Figure 15. Total volume of masonry normalized with groundplan area when applying the minimally necessary thickness, expressed
in m3/m2 on the vertical axis, as the function of the eccentricity of the groundplan.

Figure 14. Explanation of hoop resistance: red arrows represent frictional forces, not allowing the blocks of the middle layer to
separate.
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the strongly curved parts of the dome form a relatively
rigid vertical circular arch-like strip overarching
between the two sharp ends of the groundplan above
the longer axis of symmetry, such a bulge like the one
seen in Figure 17a cannot occur and the lower parts of
the strongly curved arch-like strip simply buckle
outward.

Domes are often built with an oculus, i.e., a round
opening (circular or oval) around the top of the dome.
For spherical domes a small circular oculus does not
influence the minimally necessary wall thickness
according to Heyman’s theory, and the same can be
expected for oval domes with small eccentricities. To
analyze the question, additional simulations were done
for the same intrados geometries as before, but with an
oculus of the size 10% of the longer axis of the ground-
plan, and checked the collapse modes for f = 0.7 and
slightly insufficient wall thickness. The only difference
could be detected in the collapse modes of Type 2
domes with large eccentricities (see Figure 18). A
Type 2 structure becomes higher with increasing eccen-
tricity; the vertical circular ach-like strip becomes more

and more dominant along the longitudinal cross sec-
tion, and the two sides of the dome flatten out as their
surface curvatures decrease. For eccentricities about β >
45° the failure was initiated by the flattened parts falling
inwards because of their low resistance for bending and
because of the missing part of the masonry shell around
the top (Figure 18).

4.3. The effect of contact friction coefficient

In order to analyze the effect of frictional resistance on
the minimal wall thickness and collapse modes, every
intrados applied in Section 4.2 was simulated with
several different friction coefficients and wall thick-
nesses. The simulation results are summarized in
Figure 19. Every line in the diagram belongs to a
specific intrados, and shows how the minimal wall
thickness depends on the value of the friction coeffi-
cient f between the voussoirs. (The minimal wall thick-
ness is normalized by the equivalent radius Req.)
Collapse modes of the domes with t being slightly

Figure 16. Hinging collapse modes: (a) Type 1 (flat) dome and (b) Type 2 (high) dome, both with β = 30° ground plan (color scale
indicates displacement magnitude).

Figure 17. Hinging collapse modes: (a) Type 1 (flat) dome and (b) Type 2 (high) dome, both with β = 50° ground plan (color scale
indicates displacement magnitude).
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below the minimally necessary value were also
observed. According to the experiences, three domains
of the friction coefficient can be identified for each
intrados.

(1) For f above approximately 0.2–0.3 the minimal
wall thickness is not sensitive to f in the observed range
(up to f = 0.7). In these cases collapse occurring for
insufficient wall thickness happens with a hinging
mechanism, without sliding. The lower boundary of
this domain of f, the transitional friction coefficient
ftr, depends on the geometry of the intrados.

(2) Below ftr but above the value of critical friction
coefficient fcr, a combined collapse mode containing
sliding and rotational hinging occurs if the wall thick-
ness is too small. Such a collapse mode can be seen in
Figure 20a for a Type 1 dome and in Figure 20b for a
Type 2 dome. In this range the value of tmin strongly
depends on f. The smaller is the friction coefficient, the
larger is the necessary wall thickness to balance the self
weight, and sliding becomes more and more dominant
in the collapse mechanisms.

(3) Below the fcr critical friction coefficient belonging
to the analyzed intrados, the structure cannot be in
equilibrium for any thickness. In this case a pure slid-
ing mechanism can be observed. Failures of this type
are shown in Figures 21a and 21b.

These three domains were also found by D’Ayala and
Casapulla (2001) for hemispheral domes with finite fric-
tion.While for Heyman’s orange-slice-like cracked domes
the two special values of f separating the three domains are
fcr = 0.20 and ftr = 0.25 in the DEM simulations, according
to their theory D’Ayala and Casapulla (2001) found that
for membranes with fixed supports against any transla-
tion, and considering their “x+z” curvewhich corresponds
to removing a fictitious constraint on the position of the
thrust surface, their values were 0.136 and 0.25, respec-
tively. For the hemispheric dome with brick ordering
providing hoop resistance 0.20 and 0.23 is given by the
DEM simulations (For semicircular arches the same three
domains were recognized and determined by Sinopoli
et al. (1997) and Gilbert et al. (2006), with the separator
values f = 0.31 and 0.395. The existence of the three
collapsemodes was also confirmed by the discrete element
simulations of Rizzi et al. (2014) for different arches.)

Figure 22 summarizes the fcr and ftr values depending
on the eccentricity of the groundplan. The critical friction
values (two curves with solid markers) indicate that Type
1 (“flat”) domes are more sensitive to sliding failure, while
in the case of Type 2 (“high”) domes the critical friction
coefficients are always lower than that of the spherical
dome (which was found in the present study to be
approximately 0.20). The highest and lowest critical fric-
tion coefficients are 0.24 (for Type 1) and 0.14 (for Type
2), and both values were obtained at very high eccentricity
(angle β around 50°). The two curves with the empty
markers represent the transitional friction coefficient.
For a hemisphere it was 0.23 and for different oval shapes
its value varied between 0.31 and 0.16.

Figure 18. Hinging collapse mode of a Type 2 (high) dome with
an oculus, with β = 55° ground plan (color scale indicates
displacement magnitude).
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Figure 19. The necessary minimal wall thickness normalized by the equivalent radius (expressed in %) as the function of the applied
friction coefficient (solid lines: Type 1 domes; broken lines: Type 2 domes).
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Consequently, if the friction coefficient is above
approximately 0.3, every dome is in the range of purely
rotational hinging collapse modes, and tendencies simi-
lar to those observed in the case of 0.7 friction coeffi-
cient can be recognized. This can be seen in Figure 23,
where the minimal wall thickness (normalized by the

equivalent radius) as the function of the eccentricity
angle β is shown for different friction coefficients ran-
ging from 0.3–0.7. Curves belonging to Type 1 domes
with different friction angles (circular markers) are
similar to each other. They indicate that slightly
eccentric domes need higher thickness, and very
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Figure 22. Critical and transitional frictional coefficient as the function of the eccentricity of the groundplan.

Figure 20. Mixed collapse modes: (a) Type 1 (flat) dome with β = 50° ground plan and (b) Type 2 (high) dome with β = 30° ground
plan (color scale indicates displacement magnitude).

Figure 21. Sliding collapse modes: (a) Type 1 (flat) dome and (b) Type 2 (high) dome, both with β = 50° ground plan (color scale
indicates displacement magnitude).
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eccentric Type 1 domes are more favourable than sphe-
rical or slightly eccentric Type 1 domes. The curves
belonging to the Type 2 domes (diamond markers)
are also similar to each other; they show that domes
with large eccentricities need smaller wall thickness
than spherical or slightly eccentric Type 2 domes.

Since the friction coefficient can safely be assumed
well above 0.3 in all practical situations (apart from
very special extreme cases), the diagrams in Figure 23
offer a possibility for the practicing engineer to assess
the geometrical safety of an actual oval dome. The
thick broken lines (the upper and the lower of which
belonging to the Type 1 and to the Type 2 domes,
respectively) give a conservative estimation of the
necessary wall thickness, depending on the eccentri-
city of the groundplan. This estimated minimal wall
thickness can be compared to the actual thickness of
the analyzed real dome to appraise the safety of the
structure.

5. Conclusions

After a careful calibration procedure, several 3DEC
simulations were done on dome models with different
intrados shapes and wall thickness. The main advantage
of using a discrete element code instead of developing
an ad-hoc theoretical model like those in some of the
quoted references is that the discrete element simula-
tions could serve as virtual experiments: the history
leading to failure or reaching the equilibrium could be
followed with a step-by-step time integration scheme.
The main disadvantage of using DEM is that the calcu-
lations are very time-consuming: on an average PC
several hours may be needed for a given dome to
collapse or to become equilibrated.

The following conclusions can be drawn from the
results.

● In order to receive a close approximation of
Heyman’s classical theory with rigid blocks, the
numerical control parameter kN should be at least
1011–1012 N/m3 and the perimeter of the ground-
plan should be subdivided at least into 30 sections.
(The value of kN should be rescaled for model
dimensions differing by orders of magnitude from
those applied in this article.) Models with smaller kN
require slightly larger wall thicknesses to be stable;
however, results based on realistic contact stiffnesses
of mortared joints (kN = 1010–1011 N/m3) differ only
within a few percentage from the results belonging
to theoretically infinite kN. Domes with smaller kN
require larger wall thickness to be stable: the classical
theory is slightly on the unsafe side.

● The simulations on hemispherical domes with
rigid elements confirmed the conclusion of Lau
(2006) that with hoop forces (caused by the fric-
tional resistance along the horizontal joints) the
minimal wall thickness is definitely smaller than
suggested by Heyman. The discrete element simu-
lations gave an even smaller minimum wall thick-
ness than the value found by Lau: 0.037 times the
radius was received for hemispheral domes. Note
that this value was measured for 35° frictional
angle (f = 0.7). In the analyzed range of the fric-
tion coefficient between ftr ≤ f ≤ 0.7 the value of f
only weakly affects tmin.

● Type 1 oval domes need larger wall thicknesses than
hemispherical domes except for geometries with
very high eccentricity. On the other hand, apart
from the region of low eccentricities (i.e., nearly
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Figure 23. The necessary minimal wall thickness normalized by the equivalent radius (expressed in %) as the function of the
eccentricity of the groundplan.
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hemispheral domes) Type 2 domes can balance their
weight with smaller thicknesses than hemispherical
domes. Depending on the eccentricity of the
groundplan, both Type 1 and Type 2 domes may
require a lower total volume of masonry than a
hemispherical dome to cover the same area.

● While in most cases it was found that for realistic
frictional resistance the hinging failure mechanism
was basically the same as for hemispherical domes,
in the case of Type 2 domes having an oculus a
new hinging failure mode was revealed for large
eccentricities of the groundplan.

● For low frictional resistance (f being below ftr whose
value was found to be approximately 0.16–0.31
depending on the shape of the intrados), combined
sliding-hinging collapse modes occur and the mini-
mal wall thickness becomes strongly sensitive to f.
Decreasing the frictional resistance even further, a
critical value fcr is reached which varies from 0.14–
0.24, depending on the exact geometry of the intra-
dos: at this critical value the necessary minimal wall
thickness tends to infinity and a pure sliding failure
occurs for any wall thickness.

● Conservative approximations on the necessary wall
thickness were given in Figure 23 for the practicing
engineer, to provide a tool for appraising the geome-
trical safety of an actual oval dome. After measuring
the eccentricity of the groundplan and deciding
whether the intrados has a Type 1 (flat) or Type 2
(high) geometry, the wall thickness of the analyzed
real dome can be compared to the approximated
necessary value.
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