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Abstract 

The paper presents discrete element simulations of the in-plane horizontal shear of planar 

walls having different bond patterns. The aim of the analysis was to decide whether the shear 

resistance could be improved by applying patterns containing vertical bricks. The results show 

that the presence of vertical bricks increases the shear resistance in case of low vertical 

confining load only, and the length-to-height ratio of the wall also significantly affects the 

shear resistance. 

 

1. Introduction 

Planar walls are the most widely applied components of masonry and infilled 

reinforcement frame buildings. They are known for being vulnerable for in-plane horizontal 

shear, which significantly affects the load bearing capacity of the whole structure. This feature 

is the main reason of many damages of masonry buildings exposed to earthquakes and other 

soil motions. The magnitude of the vertical load acting on shear walls significantly affects 

both the failure mechanism and the load bearing capacity. Depending on the structural role of 

the wall, this magnitude can vary on a large scale. In case of infilled frames where the 

mechanical effect of the masonry is usually ignored in the practical design, the vertical load 

transferred to the masonry is extremely low (below 1 kN/m), while in case of multistory 

masonry buildings it may take high values (e.g. 100 kN/m). As an example, the crack pattern 

of a masonry infill loaded by horizontal shear until failure can be seen in Figure 1.1. 

 

 

 

 

 

Figure 1.1 

Crack pattern of a sheared planar wall in  

reinforced concrete frame (photo: second  

author) 

 

 

 

 

 

Due to their complex material and structural behaviour, modelling of masonry structures 

has always been a significant challenge for structural engineers. Nowadays the most popular 

numerical approaches are the methods based on Limit State Analysis (e.g. O’Dwyer, 1999; 

Block and – Ochsendorf, 2007; Baggio and Trovalusci, 2000), the different finite element 

techniques (FEM), and the several versions of the discrete element method (DEM) (see 
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Section 2.1). Roca et al. (2010) and Baraldi et al. (2015) gave a deep and detailed overview 

about these possibilities. Giamundo et al. (2014) compared the different modelling strategies 

for the special case of low strength masonry structures. Equivalent continua like Cosserat 

models, can also be applied in FEM. Trovalusci and Masiani (2003) derived a nonlinear 

Cosserat model and applied it successfully for planar walls. Casolo (2006) introduced an 

orthotropic Cosserat model based on the homogenization of the properties of bricks and 

mortar in a planar wall. With the help of the virtual work principle, Trovalusci et al. (2014) 

derived a micropolar, a second gradient and a classical continuum model on the basis of rigid 

particle lattice systems. Identification of material parameters is also a complex task. The 

conventional and popular way to obtain them is to perform direct small-scale laboratory tests 

on the different constituents of the masonry, and then derive the phenomenological 

characteristics through a proper homogenization. However, it is not the only way to determine 

them. Sarhosis et al. (2014) for example applied a more precise and complex method, 

transforming the task into an optimization problem. With the help of laboratory experiment a 

characteristic response of the structure is to be measured first (e.g. ultimate load, load at first 

visual crack etc.), then with successive numerical simulations the material parameters are 

identified by minimizing the deviation of the response between the numerical and 

experimental results. 

In the present study DEM is applied for performing virtual (i.e. computer-simulated) 

experiments instead of direct laboratory measurements. The material parameters of the DEM 

models are taken from the laboratory experiments of Fódi (2011). The aim of the virtual 

experiments is the following. 

When the bricks or voussoirs are relatively strong and the mortar is weak or missing, 

there are three main characteristic failure modes of sheared planar walls, depending on their 

length to height ratio (l/h) and the material properties: (i) horizontal shear plane developing; 

(ii) diagonal cracking; (iii) rocking around the crushing corner. These modes are illustrated in 

Figure 1.2 where the gaps indicate the cracking pattern. 

 
Figure 1.2 Characteristic failure modes of planar masonry walls (from left to right: shear 

plane, diagonal cracking and rocking) (3DEC simulations) 

The final damage pattern and ultimate shear load is affected by factors such as material 

properties, ratio of the main dimensions and the applied bond pattern. The most widespread 

brick pattern is the English bond (first picture in Figure 1.2). However, vertically installed 

bricks may improve the shear performance. Thus the aim of the present study is to see 

whether suitably chosen bond patterns can increase the load bearing capacity of planar walls. 

Four different bond patterns are investigated, analyzing the effect of the vertical load 

magnitude and of the length/height ratio. (The bricks are assumed to be strong so that the 

failure is due to contact cracking or sliding in all cases considered in the present paper.)  
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2. Tool of the simulations: DEM and the applied software 

2.1 The Discrete Element Method 

The discrete element method (DEM) is a powerful tool for the modelling of masonry 

structures where contact separation and frictional sliding between the bricks or stones are 

common. DEM was first introduced for the simulation of fractured rocks by P.A. Cundall 

(1971), and has been applied in the engineering practice approximately since the 1990s, when 

computer hardware became powerful enough to simulate realistic problems on average PCs. 

A discrete element model considers the structure to be a collection of separate blocks, 

“discrete elements”, each of which is able to move and – in most software – to deform 

independently of each other. The blocks may come into contact with each other hence 

distributed forces can be transmitted from one block to another, causing stresses and 

deformations in the blocks. According to the criteria formulated by Cundall and Hart (1992), 

a numerical technique is a discrete element model if 

(1) the elements are able for finite (i.e. large) translations and rotations; and 

(2) complete detachment as well as formulation of new contacts are allowed and 

automatically followed. 

The second criterion means two important differences from the finite element method 

(FEM): there are no continuity conditions at the common points of the contacting elements, 

and the elements are continuously checked throughout the calculations whether they get into 

contact with each other. 

The large displacements are usually followed with the help of some kind of a time-

stepping scheme: most DEM codes determine the characteristic motions of the analysed 

system (leading from an initial geometry to the equilibrium position corresponding to the 

loads) along a series of small but finite time intervals, applying Newton’s laws of motion. 

Using DEM, a simulated structure may split into pieces (e.g. a stair may fall into individual 

treads) which may even bounce into each other on the ground forming a heap balanced under 

its own weight. There are innumerable different versions of discrete element techniques – the 

elements may be rigid or deformable, spherical, polyhedral or irregular, the time integration 

may be explicit or implicit, or may be replaced by a quasi-static method, etc. A very useful 

introduction is given by O’Sullivan (2011) on the most important techniques
1
. An excellent 

overview is given by Lemos (2007) on the different mathematical and practical approaches to 

simulate masonry structures with the help of DEM, including practical engineering 

applications as well. 

Despite the few doubts regarding its usage (Huerta, 2008), the capability to simulate 

partial or complete separation of blocks from each other and contact sliding between the 

voussoirs makes DEM a suitable choice. Therefore, a carefully calibrated DEM model is a 

powerful tool for the analysis of masonry structures. Such a DEM model was applied by 

Sarhosis et al. (2014) for the analysis of masonry infilled frames with openings. Because of its 

ability to follow frictional sliding, failure processes and collapse histories in detail, DEM was 

chosen in the present studyd to serve as the basic tool of the investigations introduced in the 

present paper. 

                                                 
1
 A special value of that book is that the issue of numerical stability, which is particularly important in the 

stability analysis of masonry vaults and domes, is discussed in detail. 
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2.2 The applied software 

The commercial DEM code named 3DEC was applied in the calculations. UDEC 

(“Universal Distinct Element Code”), the 2D ancestor of 3DEC, was originally developed for 

the modelling of fractured rocks (Cundall, 1971), but today its 2D and 3D versions are widely 

used in the engineering practice also for masonry structures. 

The discrete elements in 3DEC may have any polyhedral shape, and they can be made 

deformable in such a way that they are divided into simplexes (tetrahedra in 3D) which serve 

as uniform-strain finite elements. The nodes of the simplexes (“gridpoints”) of the deformable 

elements are the basic units of the analysis. The mass of a gridpoint is defined with the help of 

the volume of the Voronoi cell around that gridpoint within the element, and different forces
2
 

may act on this volume assigned to the gridpoint. The basic step of the calculations is to 

determine the displacements of these nodes during a small finite t time interval, and this is 

done by Newton’s second law of motion (force-acceleration law). An explicit time integration 

scheme, based on central differences, is used for simulating the mechanical behaviour 

(motions, from them strain increments, changes of stresses and forces, etc.) over time: the 

simulation of the state changing under a given loading process is achieved by step-by-step 

calculation of the incremental motions of the reference points or gridpoints. 

The joints between the elements may have, in principle, two different roles depending 

on the intention of the modeller. The first option (the one that was used in this present study) 

is that the joints represent some kind of mortar layer (or e.g. clay layer in fractured rocks) 

having a finite thickness in reality. In this case, the material parameters of the joints express 

the deformability of these layers and their failure criteria. Therefore a normal and a tangential 

stiffness (i.e., resistance to relative translation) have to be prescribed along with either some 

fracture criteria (normal and shear strength) and perhaps a friction coefficient in order to 

define the conditions when the joints fail. 

The other option is most suitable if there is no material layer between the blocks in the 

real system. In this case the aim is to simulate dry contacts, or perhaps to neglect the weak 

mortar in an old masonry structure. The friction coefficient of the joints still has a real 

physical meaning, expressing the sliding criterion of the two contacting bricks or stone blocks 

along each other. The contact stiffnesses, on the other hand, are artificial numerical penalty 

parameters only. This option was not applied in the present paper. 

2.3 Geometry and material properties of the simulated walls 

During the simulations four different bond brick patterns were investigated, each made 

of conventional Hungarian solid masonry units (120x250x65 mm
3
, see Porotherm, 2014). 

However, in the models simplified type of micro modelling was applied, which means that 

only the masonry units had a finite volume, while the originally ~1 cm mortar layers were 

included in the size of the bricks and they were represented by zero-thickness contact surfaces 

between the blocks. 

Figure 2.1 shows the four different bond patterns analysed in the simulations. The 

classical English bond and the herringbone pattern are well-known in the engineering 

practice; an X-pattern and a V-pattern (both containing vertical bricks arranged in a special 

way) were invented to try whether they have advantages to the traditional patterns. 

                                                 
2
 e.g. weight, distributed forces expressed by neighbouring Voronoi cells because of the stresses inside the 

simplexes, contact forces transmitted from contacting elements. 
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Figure 2.1 The investigated bond patterns from left to right: English bond, diagonal 

herringbone pattern, X-pattern, and V-pattern 

The total dimensions of the walls having different patterns were very close to each other 

(about 231(233) - 462(467) cm  161 cm  25 cm, the small differences came from the 

different numbers of truncated bricks applied to the different bond patterns). Walls having 

different length-to-height ratios (Table 2.1) were prepared for each bond pattern, in order to 

analyse the effect of the wall shape. 

Table 2.1 The applied l/h ratios 

 #1 #2 #3 #4 

Length/height (l/h) ratios [-] 1.42 1.89 2.36 2.84 

 

In all cases the masonry units had linearly elastic, isotropic mechanical behaviour while 

the joints (mortar layers) followed the cohesionless Coulomb friction law. Table 2.2 shows 

the parameters of the different models: the density , bulk and shear modulus K and G 

corresponding to the bricks, the normal stiffness kn, shear stiffness ks and internal friction 

angle  corresponding to the joints. The applied material parameters are based on the 

experimental results of Fódi (2011).  

Table 2.2 The applied material parameters 

 ρ [kg/m
3
] K [N/m

2
] G [N/m

2
] 

Brick model 1428 1.1e10 8.33e9 

 kn [N/m
2
/m] ks [N/m

2
/m] φ [°] 

Joint model 1e10 7e9 38 

 

2.4 Loads and boundary conditions 

The wall models were supported with a foundation block below (see Figure 2.2): the 

nodes of this lowest block were fixed against any translations. The applied loads consisted of 

three components (see Figure 2.2 again): (i) first the selfweight of the blocks was applied; (ii) 

then a vertical stabilizing load was put on the top of the wall; (iii) finally, as the main loading 

component of the analysis, a monotonically increasing horizontal lateral load was applied 

with the help of a simulated hydraulic jack.  

The magnitude of the stabilizing vertical load was one of the parameters whose effect 

on the shear resistance (i.e. on the magnitude of the ultimate shear load and on the failure 

mechanism) was investigated. Six different values were used and the corresponding shear 

resistances were determined for each (see the applied magnitudes in Table 2.3).  
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Table 2.3 The different vertical load magnitudes  

 #1 #2 #3 #4 #5 #6 

Vertical load magnitudes [kN/m] 0.87 4.35 8.7 21.74 43.48 86.96 

 

The total loading process consisted of the following steps. First of all, the foundation 

element at the bottom of the wall was supported against all translational velocities while all of 

the bricks were free to move and deform, and the gravitational load of the bricks was applied. 

After finding the equilibrium under selfweight, the vertical load was put on the top surface of 

the wall as a uniformly distributed load (Figure 2.2). In order to ensure quasi-static loading 

circumstances, every vertical load was applied in about thirty steps with a careful balancing 

process after each. 

 

Figure 2.2 The applied vertical load and the horizontal shear force expressed by a lateral brick 

The horizontal shear loading was expressed with the help of a horizontally moving 

velocity-controlled lateral block, simulating the hydraulic jack usually applied in laboratory 

experiments. In order to avoid the sudden impact of the block into the edge of the wall and to 

preserve the quasi static characteristic of the process, the procedure consisted of consecutive 

loading and equilibrating phases. In a loading phase the magnitude of the prescribed velocities 

of the side block was defined according to a special function (see Figure 2.3), and altogether 1 

mm translation was accumulated. Then an equilibrating phase followed: the velocities were 

set to zero, and the model was equilibrated (cycling was continued until the average 

unbalanced nodal force resultant divided by the average load acting on the nodes becomes 

smaller than 10
-5

) In the loading phase the velocity of the loading block first gradually 

increases from 0.005 to 0.015 m/s (first third of the total loading phase), then the velocity is 

kept constant in the middle stage (second third of the loading phase), and finally it decreases 

back to 0.005 m/s in the same way (last third of the loading phase). The discrete values of this 

function were calculated in such a way that a total 1 mm translation was produced until the 

velocity decreased to zero (see Figure 2.3). Note that the area under the red line is 1 mm 

altogether.  

 

Figure 2.3 The prescribed function for the definition of the translational load 
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The aim of the simulations is to determine the ultimate load for different bond patterns 

and vertical load magnitudes. Since the definition of 'load bearing capacity' is not 

unambiguous for masonry structures, its concept has to be uniquely defined before a 

numerical analysis. In this study, the load bearing capacity is defined as the first local 

maximum on the force-displacement diagrams, which is often (but not always) also the 

highest occurring value. For the better understanding of the definition, the following figure 

shows three different load-displacement scenarios, and the ultimate shear load is marked with 

a red circle in every case. 

 

Figure 2.4 Definition of ultimate load for different load-displacement scenarios 

2.5 Convergence analysis 

In the 3DEC model each deformable block (or brick) is subdivided into uniform-strain 

finite elements. Following the FEM protocols, a convergence analysis is required to eliminate 

the error originated from a perhaps too rare mesh. For this purpose, the same problems were 

repeated in 3DEC with different mesh sizes, namely the English and X-pattern walls with 

slightly smaller dimensions (in order to reduce the necessary computational time) under 86.96 

kN/m vertical load. Since the ultimate shear load will be used as the main characteristic 

determined in the simulations, the load bearing capacity of these walls is chosen to be the 

basis of the convergence analysis too. The density of the mesh is characterized with the help 

of three numbers which how many finite elements are applied along the specific edges (for 

example 1×2×3 means that the block is divided into one part along the shortest, two parts 

along the middle and three parts along the longest edge). The results of the analysis can be 

seen in Figure 2.5. 
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Figure 2.5 The result of the convergence analysis 

According to the figure, six different mesh sizes are investigated, namely from 1 to 6 on the 

diagram (using the previously introduced notation): 1×2×2, 2×2×2, 2×2×3, 2×3×3, 2×3×4, 

and 3×3×4. The results show that the fifth one (2×3×4) is already enough to be used during 

the simulations because the difference between the fifth and sixth cases is negligible. The 

applied subdivision is shown in Figure 2.6. 

 
Figure 2.6 The applied finite element mesh of a brick element 

The small loading block on the left of the wall simulating the hydraulic jack is also 

subdivided into 2×3×4 elements. However, since all its FEM nodes are translated with exactly 

the same prescribed displacement, the loading block does not deform, and the details of its 

subdivision are indifferent. 

The mesh generator of the 3DEC software is based on a random algorithm, 

consequently if the same problem is intended to be repeated (with same mesh density), 

different results may be received due to the slightly different random finite element meshes 

inside the discrete elements. In case of rare meshes it can lead to a serious difference between 

the results, thus in contrast with the FEM programs, the scatter of the results depending on the 

mesh density has also to be checked. The shearing process of the English wall with 21.74 

kN/m vertical load was performed twice with tetrahedral subdivision, and the corresponding 

force-displacement diagrams were compared. The diagrams belonging to the two different 

meshes practically perfectly coincided, so the subdivision of each brick into 2×3×4 finite 

elements was proven to be dense enough. 

1×2×2 2×2×2 2×2×3 2×3×3 2×3×4 3×3×4 
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3. Results of the simulations 

3.1 Shear behaviour depending on the vertical load 

This section introduces the dependence of the shear behaviour on the magnitude of the 

constant vertical load acting on the top of the walls. All models considered in this section 

were around 2.31 - 2.33 m long according to the number of truncated bricks in the different 

patterns. The l/h ratio was approximately equal to 1.42. The herringbone pattern is not 

symmetric. Therefore, in addition to shearing from left, the process was also performed from 

the opposite direction, having the hydraulic jack on the right side (this will be denoted as 

“Herringbone_R” in the diagrams below). 

In case of the highest vertical load (86.96 kN/m), perhaps in contrast with the 

expectations, the classical English wall had the largest resistance to shear (Figure 3.1). The 

next one was the Herringbone_R wall, then the X-pattern and V-pattern walls followed. Note 

that the resistance of the herringbone wall is highly dependent on the direction of the shear 

load (more than 30 % in the shear forces). 

 

Figure 3.1 The horizontal force-displacement diagrams for the case of the largest vertical load 

Considering the crack patterns (captured at 40 mm horizontal displacement) for the 

English, X-pattern and Herringbone walls (Figure 3.2, from left to right), the failure 

mechanism was always diagonal cracking (as well as in the other two cases, V- and reversed 

herringbone pattern, not shown here). Since there is no horizontal shear plane in case of the 

highest vertical load, the vertically installed bricks do not improve the shear performance of 

the walls (actually their presence seems to slightly reduce it due to the rotation of the vertical 

bricks along the diagonal cracking), thus the English wall supports the highest horizontal load. 
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Figure 3.2 Crack patterns for the case of the largest vertical load (86.96 kN/m). Color scale 

indicates displacement magnitude (from left to right: English, X-pattern and Herringbone) 

Now consider the case of the lowest vertical load. From the detected force-displacement 

diagrams (Figure 3.3), contrary to the previous case considering a large vertical load, the 

Herringbone_R and X-pattern walls have the largest load bearing capacity, and the English 

wall practically shows the worst performance.  

 
Figure 3.3 The horizontal force-displacement diagrams for the case of the lowest vertical load 

To get a better understanding of this, the crack patterns captured at 20 mm horizontal 

displacement of the same walls are shown again (Figure 3.4). In case of the English wall a 

horizontal shear plane develops, but at the other walls the diagonal cracking (which is a 

combination of horizontal sliding and separation of vertical joints) remains the failure mode, 

thus now the vertical bricks indeed improve the shear performance of the walls. 

 

Figure 3.4 Crack patterns for the case of the lowest vertical load (0.87 kN/m).. Color scale 

indicates displacement magnitude (from left to right: English, X-pattern and Herringbone) 

Compare now the load bearing capacity of the different walls under the six different 

vertical load magnitudes. Figure 3.5 shows this load bearing, normalized with the magnitude 

of the vertical load, as the function of the vertical load itself (along the horizontal axis the 

magnitude of the vertical load is in logarithmic scale). It can be concluded that the vertically 
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installed bricks only help when the vertical load is low (up to about 4.35 kN/m). Above this 

limit the classical English wall shows the best shear performance. 

 

Figure 3.5 The load bearing capacities of the walls depending on the vertical load magnitude 

3.2 Shear behaviour in terms of the length-to-height ratio 

The second mean factor modifying the shear resistance is the l/h ratio of the walls. For 

every pattern described previously, we studied four different lengths. All of them considered 

two vertical load magnitudes: 4.35 and 21.74 kN/m. Consider first the case of the lowest 

vertical load magnitude (Figure 3.6). 

 
Figure 3.6 Effect of the l/h ratio for 4.35 kN/m vertical load 

In all cases, the shear load bearing capacity turned out to be an approximately linear 

function of the length to height ratio. Since the vertical load resultant increases proportionally 

with the length of the wall, according to the applied Coulomb frictional law, the resistance 

should be a monotonically increasing function of the length assuming that failure mode does 

not change with increasing length. Indeed, it was found for all patterns that the failure 
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mechanism did not depend on the length to height ratio: the mode occurring for the shortest 

wall of a certain pattern was valid for all lengths belonging to that same pattern.  

English wall has the smallest shear resistance. Figure 3.7 (captured slightly after the 

ultimate load) shows that a sliding failure mode occurs for English walls, while a diagonal 

cracking happens in the case of the other patterns (as a characteristic example, the 

herringbone pattern is shown). The low load bearing of the English wall in comparison to the 

other patterns is explained by the position of the sliding surface: for all l/h ratios, the plane is 

near the top of the wall, at the same height for every length. The compression along this 

surface is produced by the vertical load on top plus the weight of the bricks above the sliding 

plane. At patterns where some of the sliding horizontal contacts carry larger compression than 

others (see the herringbone pattern in Figure 3.7 for example), the contribution of the lower 

contacts to the shear resistance is more significant leading to higher load bearing capacity.  

 

Figure 3.7 Failure modes for different l/h ratios for 4.35 kN/m vertical load. Color scale 

indicates displacement magnitude (up: English bond, down: Herringbone) 

At medium vertical load magnitudes (Figure 3.8)) the resistance of the walls increases 

with the length. For long walls the X-pattern and herringbone_R walls have the highest load 

bearing capacity, while in the shortest case the English shows the best resistance. 

 
Figure 3.8 Effect of the l/h ratio for 21.74 kN/m vertical load 

The damage modes in Figure 3.9 offer the following explanation: In case of the English 

pattern, at the shortest wall a combined diagonal cracking and horizontal sliding failure occurs 

which implies higher shear resistance. However, with increasing length to height ratio the 

horizontal sliding failure becomes dominant over the combined mode, resulting in the 

decreasing of the shear performance. At the Herringbone pattern instead of sliding, the 

rotation of the vertical bricks can be noticed along the diagonal failure surface, thus lower 
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horizontal force is enough to displace the wall (similar mechanism was found at all other 

patters containing vertical bricks). Indeed, by the comparison of the shortest walls in Figure 

3.9, at both patterns similar diagonal failure surface appears, but the English pattern has the 

larger resistance. In case of long walls with vertical bricks a significantly larger part of the 

wall is moving in comparison with the English pattern because of the different failure modes, 

leading to higher resistance. 

 

Figure 3.9 Failure modes for different l/h ratios beside 21.74 kN/m vertical load. Color scale 

indicates displacement magnitude (up: English bond, down: Herringbone) 

 

4. Conclusions 

In this study masonry walls with different bond patterns were investigated under 

monotonically increasing horizontal shear, with a particular attention to the effect of a 

constant vertical load magnitude and of the length/height ratio of the wall. It turned out that 

the stabilizing effect of the vertical load plays a very important role in the shear performance: 

 In case of low magnitudes it was found that walls without vertically installed bricks 

are susceptible to fail with horizontal shear plane which leads to a lower shear resistance.  

 In case of high vertical load magnitudes the characteristic failure mode was diagonal 

cracking or combined diagonal and sliding failure at all bond patterns, and the classical 

English wall showed the best performance against horizontal shearing.  

In contrast with the vertical load magnitude, the l/h ratio did not significantly affect the 

failure mode of the walls, thus if the failure mode was a horizontal shear plane, the ultimate 

load was practically a linear function of the length of the wall. At patterns containing vertical 

bricks, instead of sliding the rotation of the vertical bricks can be noticed along the diagonal 

failure surface, which also affects the magnitude of the ultimate load. 

Walls with herringbone (i.e. non-symmetric) pattern turned out to be rather sensitive to 

the direction of the shear load: more than 30 % difference was detected according to the 

direction of the loading. Consequently, this pattern can be beneficial only in those cases 

where the direction of the shear load is known and remains unchanged. However, it is not 

valid for usual shear loads in the engineering practice (earthquake, soil motions). 

To summarize, the results show that the application of vertical bricks in the bond pattern 

does not necessarily lead to an increased shear resistance: the magnitude of the vertical load 

and the length to height ratio determine which bond pattern leads to the highest shear 

resistance.  
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