Assessment of the tunneling-soil-structure interaction (TSSI) in urban area due to underground excavation (mechanized excavation)

Elsődleges fülek

Erre a témakiírásra nem lehet jelentkezni.
Nyilvántartási szám: 
Témavezető neve: 
Témavezető e-mail címe:
A témavezető teljes publikációs listája az MTMT-ben:
A téma rövid leírása, a kidolgozandó feladat részletezése: 
Tunneling-soil–structure interaction (TSSI), one of the most major subjects in the domain of earthquake engineering, has been paid comprehensive attention internationally in recent decades. TSSI phenomena concern the wave propagation in a coupled system: structures built on or in the soil surface.
The recent progresses in geo-materials constitutive modelling, as well as the development of advanced numerical codes based on finite element methods, allow to solve very complex boundary value problem, with an easy user interface. The goal of this research is to present a method that shows how 3D FEM codes are able to be a powerful tool for evaluate final settlements and for studying appropriate measures to avoid negative impacts due to the TBM-EPB excavation in urban area.
Two possible paths are illustrated in order to obtain reliable predictions of the induced settlements:
-the first is based on soil in-situ data with sensitivity analysis and back analyses and will be useful for preliminary stages of the tunnel design;
-the second is based on the soils and rocks laboratory test with post-predictions of the monitored sections and will be used for more reliable further predictions.
The experimental results are used to evaluate the numerical models. In particular, the comparison between experimental and numerical results is used to select the more adequate soil model, evaluate the need for using a no-tension interface between the soil and the structure and assess the model’s ability to simulate the structural response. These results can be useful for real time adjustment of the planned operational works.
In order to achieve the objectives of the thesis following steps will be taken into consideration:
Firstly, the choice of good constitutive model will be discussed and the most important geometrical and physical aspects of modeling will be investigated.
Secondly, two strategies for predicting the induced settlement will be proposed, one based on in situ data, sensitivity analysis and back analysis technique and one on laboratory tests. Finally, an extended constitutive model to describe mitigation measures will be presented and applied to real case.
A téma meghatározó irodalma: 
1. Vittorio, G.," Mechanized tunneling in urban areas: Design methodology & construction control", Taylor and Francis Group 2007,p.113-150
2. Hoek E. ”Practical rock engineering” RocScience Ltd. 2007.
3. Bilgin N, Copur H, Balci C ” TBM Excavation in Difficult Ground Conditions: Case Studies from Turkey” Wiley 2016, p. 354.
4. E. Hoek, P.K. Kaiser, and W.F. Bawden ” Support of Underground Excavations in Hard Rock” Inst. Min. Met. 2000.
5. Giardina, G., Dejong, M., Mair, R., “Interaction between surface structures and tunnelling in sand: Centrifuge and computational modelling.”Tunnelling and Underground Space Technology 50 (2015): 465-478.
A téma hazai és nemzetközi folyóiratai: 
1. Int. J. Rock Mech. Min. Sci.
2. Tunnelling Undergr. Space. Techn.
3. Rock Mech. Rock Engng.
4. Engng. Geol.
5. Bull. Engng. Geol. Env.
6. Geotechn. Geol. Engng.
7. Geomech. Engng.
8. Periodica Polytechn – Civil Engng.
9. Útügyi Lapok
10. Földtani Közlöny
A témavezető utóbbi tíz évben megjelent 5 legfontosabb publikációja: 
1. Barna földi et al. (2017): First report of long term measurements of the MGGL laboratory in the Matra mountain range CLASSICAL AND QUANTUM GRAVITY 34:(11) Paper 114001
2. Vasarhelyi B, Kovacs L, Torok Á. (2016): Analysing the modified Hoek–Brown failure criteria using Hungarian granitic rocks GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES 2:(2) pp. 131-136.
3. Vásárhelyi B (2009): A possible method for estimating the Poisson’s rate values of the rock masses
4. Török Á, Vásárhelyi B (2010): The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from Hungary. ENGINEERING GEOLOGY 115:(3-4) pp. 237-245.
5. Deák F, Kovács L, Vásárhelyi B (2014): Geotechnical rock mass documentation in the Bátaapáti radioactive waste repository CENTRAL EUROPEAN GEOLOGY 57:(2) pp. 197-211.
A témavezető fenti folyóiratokban megjelent 5 közleménye: 
1. Vásárhelyi B, Ván P (2006): Influence of water content on the strength of rock ENGINEERING GEOLOGY 84:(1) pp. 70-74.
2. Vásárhelyi B (2005): Statistical analysis of the influence of water content on the strength of the Miocene limestone ROCK MECHANICS AND ROCK ENGINEERING 38:(1) pp. 69-76. (2005)
3. Vásárhelyi , Bobet A (2000) Modeling of crack initiation, propagation and coalescence in uniaxial compression. ROCK MECHANICS AND ROCK ENGINEERING 33:(2) pp. 119-139.
4. Vásárhelyi B (1998): Influence of normal load on joint dilatation rate ROCK MECHANICS AND ROCK ENGINEERING 31:(2) pp. 117-123. (1998)
5. Vásárhelyi B. (1997): Influence of pressure on the crack propagation under Mode I in anisotropic gneiss. ROCK MECHANICS AND ROCK ENGINEERING 30:(1) pp. 59-64

A témavezető eddigi doktoranduszai